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Abstract—As a nonlinear extension of traditional sparse
representation-based classifier (SRC), kernel SRC (KSRC) has
shown its excellent performance for hyperspectral image (HSI)
classification, by mapping the nonlinearly separable samples into
high-dimensional feature space. However, the rich locality struc-
ture of HSI contains more discriminative information, which
should be considered in KSRC. We intend to incorporate the local-
ity structure and kernel method into a unified SR-based framework
by a local spatial kernel. As a powerful texture descriptor, local bi-
nary patterns (LBP) was used to extract local feature for remote
sensing. Region-level kernels are applied to calculate the distance
between two LBP histogram features. To discover nonlinear simi-
larity information between test and training samples, we integrate
the LBP feature into spatial region-level kernel for HSI classifi-
cation. Then, we propose a weighted kernel sparse representation
classifier optimized via class-oriented strategy, which combines lo-
cal structure information and SRC in the kernel feature space
based on spatial region-level kernel. Experimental results on three
open HSIs demonstrate that the proposed method achieves better
classification performance than other state-of-the-art classification
methods.

Index Terms—Classification, class-oriented strategy, hyperspec-
tral image (HSI), kernel, local structure information, sparse
representation.

I. INTRODUCTION

HYPERSPECTRAL image (HSI), captured by hyper-
spectral sensors in hundreds of contiguous spectral
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bands, includes precious discriminative information about
materials, and has provided numerous opportunity to improve
the performance of materials classification [1]–[4], target
identification, and anomaly detection. Among the numerous
applications, HSI classification is a long-standing research
topic where pixels are labeled to one of the several thematic
classes. Various advanced classification methods, including
support vector machines (SVMs) [5], [6], multinomial logistic
regression [7], [8], neural network [9], random forest [10], and
rotation forest [11] have been investigated in recent years.

Recently, sparse representation-based classifier (SRC), which
assumes that a test sample can be compactly approximated by
only a few atoms that carry the most important information in a
structured dictionary, has attracted great concern to solve many
computer vision tasks [12]–[15]. Different from previous clas-
sifiers which make decisions based on standard classifiers (e.g.,
k-nearest-neighbor [16] or SVMs [5]), the decision rule of SRC
are based on the minimum reconstruction error of the test sam-
ple over a set of training samples or a dictionary learned from
training samples. Likewise, SRC [17]–[24] have been applied to
HSI classification, which relies on the fundamental assumption
that samples belonging to the same class approximately lie in
the same low-dimensional subspace. Chen et al. [18] proposed
a joint sparse representation classifier based on the joint sparse
model (JSM) with neighboring pixel information for HSI clas-
sification, and Zhang et al. [22] further extended the JSM with
a nonlocal spatial prior.

Previous studies [6], [25] have shown the importance of in-
corporating the spatial neighborhood information into the clas-
sification. As a powerful spatial feature extraction method, local
binary patterns (LBP) descriptor was proposed by Ojala et al. for
texture classification [26], where a local circular neighborhood
is binary thresholded by the gray of the center pixel. Various
extensions were developed for the classical LBP descriptors
[27]–[29]. As a feature extraction approach, LBP histogram
features have been used to extract local region feature, and
two fusion strategies are applied to the LBP-based feature with
other two types of features to perform an HSI classification
task [30]. The success of LBP feature is due to the discrimina-
tive ability and computational simplicity of the operator. LBP-
based features with other classifiers have been proposed. For in-
stance, Min et al. [31] combined LBP-based features with SRC
to improve the robustness to various localized variations. The
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combination of LBP features and SRC strengthens the repre-
sentation power of the test samples. However, LBP histogram
features have only been integrated into the linear SRC algorithm,
which is not able to discover nonlinear relationships of the LBP-
based features. For better utilizing the advantages, region-level
kernels were adopted to capture the nonlinear characteristics of
two LBP histogram features [32]. Thanks to the region-level
kernel, the SRC model can be extended as KSRC.

The typical SRC model does not consider the distance and
similarity between the test sample and each dictionary atom.
In general, training samples that are closer or more similar to
the test sample play greater role in representing the test sample.
To enhance the discriminative ability of original SRC model,
Lu et al. [33] extended the original SRC model by integrating
the locality structure information of samples in a unified for-
mulation, and proposed weighted SRC (WSRC) model. In [34]
and [35], WSRC adaptively exploits the similarity between the
test sample and each dictionary atom in representing the test
sample.

In HSI, neighboring pixels usually consist of similar material
and their spectral signatures are highly correlated. Nevertheless,
the original SRC only treats HSI as unordered pixels without
considering its local characteristics. In this paper, region-level
kernels based on LBP histogram feature are applied to SRC
for each pixel over a local patch to improve the classification
performance of HSI. However, as discussed in [33], dictionary
atoms far away from the test pixel tend to have less signif-
icance in representing it than other dictionary atoms. There-
fore, we integrate the locality adaptive structure information
and region-level spatial kernel-based SRC into a unified frame-
work, and propose a weighted kernel sparse representation clas-
sifier (WKSRC) for HSI classification. Previous work [36] has
indicated that componentwise updating procedure is an effect
optimization approach. Component- or class-oriented optimiza-
tion strategy leads to monotonically decrease of the objective
function and finds the global minimum without any risk of
falling into the local minimum, which has been applied to dic-
tionary update for discriminative sparse representation [37]. So
the proposed framework is solved by class-specific (or class-
dependent) weighted �1-minimization problem for more stable
and effective representation coefficient. Finally, the test sample
is assigned into the class label corresponding to the total mini-
mum residual in reconstruction errors. The contributions of this
paper are:

1) A region-level spatial kernel (HI kernel) based on LBP
features is applied to the typical kernel SRC for HSI clas-
sification.

2) To improve the discriminative ability of spatial kernel (i.e.,
region-level kernel) based SRC, we integrate locality
structure information calculated by Gaussian kernel dis-
tance into spatial KSRC and formulate as a weighted �1-
minimization problem in region-level kernel space.

3) The weighted �1-minimization problem is solved via a
class-oriented optimization strategy, which learns sparse
coding based on class-specific subdictionary.

The remainder of this paper is organized as follows. In
Section II, we briefly review the formulations of KSRC

and WSRC. Section III presents the proposed WKSRC and
class-oriented WKSRC methods. The effectiveness of the pro-
posed algorithms is demonstrated in Section IV. Finally, Sec-
tion V concludes this work.

II. SR-BASED CLASSIFIER AND LOCAL SPATIAL FEATURE

A. Kernel Sparse Representation Classifier

Generally, the linear SRC model cannot cope with the nonlin-
ear classification problem. To alleviate this problem, the original
spectral feature should be mapped into a high dimensionality
kernel space. Suppose the training dictionary D is given, the
weighting coefficients α in the kernel feature space can be ob-
tained via KSRC [38], [39] by solving the optimization problem
with a �1-norm regularization

α̂ = arg min
α̂

‖φ(y) − Φ(D)α‖2 + λ‖α‖1 (1)

where φ: Rm �→ RM , (m < M ) defines a mapping function,
which maps the samples (i.e., test sample) and training dic-
tionary into high-dimensional space: y �→ φ(y) ∈ RM ×1 , D =
[d1 , ...,dn ] �→ Φ(D) = [φ(d1), ..., φ(dn )] ∈ RM ×n . By intro-
ducing a kernel function K(a, b) = 〈φ(a), φ(b)〉, (1) can be
modified as

α̂ = arg min
α̂

‖k(D,y) − Kα‖2 + λ‖α‖1 (2)

where k(D,y) = [K(d1 ,y), ...,K(dn ,y)]T ∈ Rn×1 , and
K = ΦT Φ ∈ Rn×n denotes the kernel Gram matrix with
Ki,j = K(di ,dj ). Once obtaining the weighting coefficient α
in the kernel space, the class label of y is determined by the
minimal total residual of each class

class(y) = arg min
i=1,...,c

‖φ(y) − Φ(D)δi(α)‖2

= arg min
i=1,...,c

‖k(D,y) − Kδi(α)‖2 (3)

where δi(α) is the characteristic function that selects the coef-
ficients α associated with the ith class.

B. Weighted Sparse Representation Classifier

Considering the significance of different dictionary atoms
of the HSI, local structure information of samples can be ap-
plied to represent the test pixel. The significance can be mea-
sured by the distance between each dictionary atom and the
test pixel. Similarly, a distance-weighted CRC method, re-
ferred to nearest regularized subspace (NRS) [40], exploits the
spectral similarity (Euclidean distance) to control the regular-
ization term. To preserve the locality structure information,
weighted SRC (WSRC) imposes locality constraint on the spar-
sity regularized reconstruction problem, which can be solved by
the weighted �1-minimization problem

α̂ = arg min
α

‖y −Dα‖2 + λ1‖Γα‖1 (4)

Γy =

⎡
⎢⎢⎣
‖y − d1‖2 0

. . .

0 ‖y − dn‖2

⎤
⎥⎥⎦ (5)
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Fig. 1. Schematic illustration of the proposed CoWKSRC classification algorithm with region-level kernel based on LBP histogram feature.

where Γy is a weighted �1-regularization term, which acts as the
locality adapter that penalizes the distance between y and each
atom di , and dist(y,di) = ‖y − di‖2

2 denotes the Euclidean
distance. Once the weighted coefficient vector α is obtained,
the class label of y is determined by the lowest representation
error arg min

i=1,...,c
‖y −Dδi(α)‖2 .

C. Local Binary Patterns

Given a center pixel (scalar value) in a local patch, the cal-
culation of the LBP codes can be computed by comparing its
value with its neighboring pixels in a single scan, which can be
given by [41]

LBPu,r =
u−1∑
u=0

s(gp − gc)2p

s(x) =
{

1 x ≥ 0
0 x < 0

(6)

where gc is the gray value of the center pixel, gp is the value
of its neighboring pixels in a local circle, u is the number of
neighboring pixels, and r is the radius of the neighborhood.
The output of the LBP operator in (6) is an u-bit binary string
(including 2u distinct values) or a corresponding decimal label
extracted from the local neighboring pixel comparisons, reflect
texture orientation and smoothness in a local patch. Generally,
the occurrences of LBP operator in a local patch of size s × s
are collected into a histogram feature. The classification is then
performed by computing histogram similarities.

III. CLASS-ORIENTED WEIGHTED KERNEL SPARSE

REPRESENTATION CLASSIFIER

In this paper, we combine region-level spatial kernel and lo-
cal structure information into a unified SR-based classification
framework, and propose a weighted kernel sparse representation

classifier (WKSRC), which is solved by class-specific weighted
�1-minimization problem. Fig. 1 shows the framework of the
proposed CoWKSRC. Given a HSI, region-level kernel feature-
based uniform LBP histogram representation are applied to each
pixel over a local patch. Based on local kernel function, we then
construct the kernel subdictionary with regard to the training la-
bel class by class. Simultaneously, the class-specific weighting
matrix is calculated via Gaussian kernel distance. In the repre-
sentation stage, class specific weight coefficients are learned by
class-oriented optimization strategy based on each kernel sub-
dictionary. Finally, class label is determined according to the
minimum total residual of individual class.

A. Region-Level Kernel

In most cases, LBP is used in the form of histogram fea-
tures counted in a local window, and the similarity is preferred
to calculate the distance between two LBP histogram features
for better utilizing the advantages of LBP features. Selecting a
suitable nonlinear kernel to calculate the distance between two
histogram features, we discover the relationship between the
test sample and the training samples of the same class. Inspired
by [32], we adopt the HI [42] kernel to depict the similarity of
two LBP-based histogram feature for HSI classification, which
is given by

KH I (a, b) =
L∑

i=1

min(ai, bi) (7)

where a and b (
∑L

i ai =
∑L

i bi = 1) denote any two normal-
ized histogram vector with L bins, and it can be verified that
0 ≤ kH I ≤ 1. To evaluate the validity of HI kernel, two com-
monly used kernels (i.e., linear and RBF kernels) in HSI are
also applied to the proposed SR-based framework. The linear
kernel can be given as

Klinear(a, b) = a
b (8)
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where 
 denotes the transpose operation, and the RBF kernel
can be given as

KRBF (a, b) = exp(−γ‖a − b‖2
2) (9)

where γ > 0 denotes the width of RBF kernel and is adaptive
to the dictionary sets. What is more, all feature vectors should
be normalized to unit length with the �2-norm. For a HSI, the
LBP operator is applied to each selected subspace after dimen-
sionality reduction (DR) to form several LBP images, and LBP
histogram features are often computed for the pixel of interest
in its corresponding local LBP image region.

B. Weighted Kernel Sparse Representation Classifier

Suppose D = {Di}c
i=1 ∈ Rm×n is a training dictionary

based on LBP histogram feature for HSI, where Di ∈ Rm×ni is
the subdictionary for the ith class, m is the feature dimension-
ality, ni is the number of atom in Di , and n =

∑c
i ni is the total

number of training dictionary atoms for all of the c classes. To
capture the nonlinear similarity information of samples in the
LBP-based feature space, we map the LBP histogram feature
into the region-level kernel induced feature space, and the typ-
ical SRC in spatial region-level kernel space is extended as a
spatial KSRC. The locality structure of samples contains more
discriminative information which is equally essential for SRC.
In this paper, we propose an adaptive weighted SRC in the spa-
tial region-level kernel induced space for HSI, namely, weighted
kernel sparse representation-based classifier (WKSRC), which
can combine the locality structure information and LBP-based
spatial KSRC together. The new problem can be formulated as
the following weighted �1-minimization problem, i.e.,

α̂ = arg min
α

‖φ(y) − Φ(D)α‖2 + λ‖Γφ(y)α‖1

= arg min
α

‖k(D,y) − Kα‖2 + λ‖Γφ(y)α‖1 (10)

Γφ(y) =

⎡
⎢⎢⎣

dist(φ(y), φ(d1)) 0
. . .

0 dist(φ(y), φ(dn ))

⎤
⎥⎥⎦

(11)

where k(D,y) = [K(d1 ,y), ...,K(dn ,y)]T ∈ Rn×1 denotes
the kernel vector in spatial region-level kernel space and
K ∈ Rn×n denotes the corresponding spatial kernel Gram ma-
trix with Ki,j = K(di ,dj ). ‖Γφ(y)α‖1 denotes the weighted
�1-regularization term, dist(φ(y), φ(di)) denotes the distance
or similarity between each atom and the test sample in the
region-level kernel space, and λ controls the weight between
representation error term ‖φ(y) − Φ(D)α‖2 and the weighted
regularizer term. In this paper, we adopt the Gaussian kernel dis-
tance to capture the nonlinear distance information between test
sample y and each atom dj (j = 1, ..., n) in the spatial kernel

space, which is as follows:

distg (φ(y), φ(dj ))

= exp(−‖φ(y) − φ(dj )‖2
2)/2σ2

= exp(−[K(y,y) + K(di ,di) − 2K(y,di)])/2σ2 (12)

where σ denotes the Gaussian kernel width. Once the locality
adaptor coefficient α is obtained, analogous to (3), the decision
rule of WKSRC is determined by the lowest representation error
arg min

i=1,...,c
‖k(D,y) − Kδi(α)‖2 .

C. Class-Oriented Optimization

In the HSI, samples from the same class and different cate-
gories are both highly correlated. For a test sample, it may be
faithfully reconstructed based on several different subdictionar-
ies from various classes. The representation error for different
classes are similar. To deal with the problem, class-dependent
strategy [43] is applied to SR-based classification framework.
Different from traditional SR-based models, which mainly con-
sider minimizing the reconstruction error, we focus on learning
a more discriminative representation coefficient based on class
specific dictionary. For the aforementioned problem (10), orig-
inally solved by the weighted �1-minimization problem, and is
substituted by a class-oriented weighted �1-minimization prob-
lem (namely, CoWKSRC), which can be formulated as

α̂i = arg min
αi

‖φ(y) − Φ(Di)αi‖2 + λ‖Γi,φ(y)αi‖1

(13)

Γi,φ(y) =

⎡
⎢⎢⎣

distg (φ(y), φ(d1)) 0
. . .

0 distg (φ(y), φ(dni
))

⎤
⎥⎥⎦

(14)

where αi denotes a ni × 1 vector of weight coefficients, Φ(Di)
denotes the class specific dictionary in the region-level kernel
space, Γi,φ(y) denotes the weighted matrix specific to class i.
By introducing the kernel Gram matrix Ki = ΦT

i Φi and kernel
vector k(·,y) = ΦT

i φ(y), (13) becomes

α̂i = arg min
αi

αT
i Kiαi + 2kT αi + λ‖Γi,φ(y)αi‖1 (15)

which can be solved by weighted �1-minimization solvers class
by class. Once obtain the class specific weight coefficient αi , the
reconstruction of y in the kernel space is φ(ŷi) = Φ(D(ni )

i )αi ,
the label of y is determined by the minimal total residual, that is

class(y) = arg min
i=1,...,c

ri(y) (16)

where ri(y) = ‖φ(y) − φ(ŷi)‖2 is the residual between the
sparse approximation of class i and the corresponding test
samples. The proposed CoWKSRC algorithm is described in
Algorithm 1.
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TABLE I
PARAMETERS SETTING FOR FEATURE EXTRACTION METHODS

Feature Indian pines University of Pavia KSC

LBP [41] No. of Base image: 3 No. of Base image: 7 No. of Base image: 7
Neighborhood and radius: (8, 2) Neighborhood and radius: (8, 2) Neighborhood and radius: (8, 1)
Local patch size: 21 × 21 Local patch size: 17 × 17 Local patch size: 21 × 21

Gabor [44] No. of Base image: 10 No. of Base image: 10 No. of Base image: 10
Scale: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Scale: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Scale: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Direction: 30◦, 60◦, 90◦, 120◦, 150◦, 180◦ Direction: 30◦, 60◦, 90◦, 120◦, 150◦, 180◦ Direction: 30◦, 60◦, 90◦, 120◦, 150◦, 180◦

Algorithm 1: Class-oriented WKSRC for HSI.

1: Input: Training dictionary D = {Di}c
i=1 ∈ Rm×n ,

where Di = {dij}ni
j ∈ Rm×ni is subdictionary

associated with class i, test samples y ∈ Rm , λ, σ
2: Select a region-level kernel function K(·, ·) and its

parameters,
3: Compute its kernel Gram matrix K where

Kij = K(di ,dj ), and vector k(·,y) = [K(d1 ,y), ...,
[K(dn ,y)]T

4: Normalize each column of K and k(·,y) to have unit
�2-norm

5: for i = 1 to c do
6: 1) Calculate the locality adaptor matrix Γi,φ(y)

specific to class i using Gaussian kernel distance
according to (14);

7: 2) Solve the class-specific weighted �1-minimization
problem (15) to obtain the weight coefficient αi ;

8: 3) Calculate the residual ri(y) = ‖φ(y) − φ(ŷi)‖2
9: end for

10: Decide the final label of y based on (16).
11: Output: The estimated label of y

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed method,
we adopt three publicly available HSIs1 the Airborne Visi-
ble/Infrared Imaging Spectrometer (Indian Pines) image, the
Reflective Optics System Imaging Spectrometer (ROSIS) Uni-
versity of Pavia image, and the AVIRIS Kennedy Space Cen-
ter (KSC) image. In our experiments, three different types of
features (spectral feature, Gabor feature [44], and LBP feature
[41]) are adopted to describe each HSI pixel, and PCA (as a
dimensional reduction step) is used to obtain the first p-PC base
image. The detailed parameters values used in the paper for
different types of features are listed in Table I. Two spectral
feature-based methods (i.e., NRS [40] and class-dependent
sparse representation classifier (cdSRC) [43]) and three LBP
feature-based methods (namely as, LBP-KSRC [38], LBP-
WSRC and LBP-SVM [45]) are taken as baseline methods for
comparison purposes. In order to test the effectiveness of region-
level kernel, Gabor feature-based WKSRC (Gabor-WKSRC)
was also presented in the following tests. It should be noted
that SVM is implemented with the help of the LIBSVM [46]

1Available online: http://www.ehu.es/ccwintco/index.php

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES FOR THE INDIAN PINE IMAGE

package. As for the region-level kernel, the parameter γ for RBF
kernel is set by the median value of 1/(‖di − d̂‖2

2), i = 1, ..., n,
where d̂ = (1/n)

∑n
i=1 di is the mean of all available dic-

tionary atoms. To validate the performance of the proposed
method, three metrics (i.e., overall accuracy (OA), average ac-
curacy (AA), and kappa coefficient (κ)) are used for following
experiments.

A. Experiment on AVIRIS Indian Pines Image

1) Data description: The first HSI in our experiment was
gathered by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) sensor over the Indian Pines region in
Northwestern Indiana in 1992. This scene, covers a mixed
agricultural/forest area, and consists of 145 × 145 pixels and
220 spectral bands range from 0.4 to 2.5 μm with a spatial reso-
lution of 20 m/pixel. In the following experiments, the number
of bands is reduced to 200 by removing 20 water absorption
bands. A total of 10 366 samples containing 16 different land-
cover classes are available, most of which are different types
of crops (e.g., corns, soybeans, and wheats), as are detailed in
Table II. This scene constitutes a very challenging classifica-
tion problem due to the significant presence of mixed pixels
and unbalanced labeled classes. For each class, we randomly
choose around 10% of the labeled samples for training and the
remaining samples used for testing. The number of training and
test samples for each class is shown in Table II, and the spatial
distribution of them is visually shown in Fig. 2(b).
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Fig. 2. Indian image: (a) False color image. (b) Ground-truth map (with 16 classes); and the classification map obtained by: (c) LBP-KSRC, (d) LBP-WSRC,
(e) LBP-SVM, (f) NRS, (g) cdSRC, (h) Gabor-WKSRC, (i) WKSRC, and (j) CoWKSRC.

Fig. 3. Parameter tuning of λ and σ for the proposed CoWKSRC for AVIRIS
Indian pines image.

2) Parameter analysis: First of all, we evaluate the ef-
fect of the parameters λ and σ on the OA perfor-
mance of the proposed CoWKSRC algorithm on the In-
dian Pines image. The �1-regularization parameter λ is varied
in the range {1e − 5, 1e − 4, 5e − 4, 1e − 3, 5e − 3, 1e − 2},
and the Gaussian kernel width σ is varied in the range
{1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8}. The OA performance
versus different λ and σ is depicted in Fig. 3, so we set
λ = 1e − 4 and σ = 2 for the following experiments.

3) Classification results: The classification results of the
proposed HI-based region-level kernel methods (WKSRC
and CoWKSRC) with several baseline classifiers (LBP-KSRC,
LBP-WSRC, LBP-SVM, NRS, and cdSRC) on the AVIRIS In-
dian Pines image are summarized in Table III. From Table III,
the proposed HI-based region-level kernel methods outperform
other two state-of-the-art spectral-based methods (i.e., NRS
and cdSRC). As a class specific method, different information

(representation error and euclidean distance) are integrated into
SR-based classification framework in cdSRC, and it achieves a
higher accuracy than the CR-based method with local structure
information (i.e., NRS). As �1-norm-based methods, the coding
coefficients reflect the correlation between the test sample and
the selected dictionary. Based on the whole or class-specific
dictionary, the nonzero position and the relative value of the
coding coefficients change small. Hence, WKSRC has similar
classification result with its class-oriented optimization variant
(i.e., CoWKSRC). WKSRC and CoWKSRC have a better clas-
sification performance than LBP-based methods with different
state-of-the-art classifiers (namely, LBP-KSRC, LBP-WSRC,
and LBP-SVM). LBP-KSRC (based on RBF kernel) achieve
a relevant satisfying classification result of 93.63% by map-
ping into a nonlinear kernel space. As an extension of typical
SRC, LBP-WSRC integrates the local structure information be-
tween the test pixel and each dictionary atom as the prior in-
formation into the SRC model. Compared to LBP-KSRC, LBP-
WSRC (Euclidean distance) is more effective with 2.38% higher
accuracy. Based on the similar classification model, LBP-based
method (WKSRC) has a much higher accuracy than Gabor-
filtering feature method (Gabor-WKSRC). The corresponding
classification maps are shown in Fig. 2(c)–(n).

4) Evaluation of multiple region-level kernel variants: To
illustrate the performance of the region-level kernel-based
method with multiple kernel variants, three kernels, i.e.,
RBF , linear, and HI kernel, are visually and quantitatively
compared, which are both optimized by class oriented strategy,
and denoted by CoWKSRC-RBF , CoWKSRC-linear, and
CoWKSRC-HI , respectively. We randomly choose a test pixel
located at (23,107) belonging to class 8 in Indian pines image.
The representation coefficient of the proposed CoWKSRC with
three different kernels are visually depicted in Fig. 4(a)–(c)
based on 1043 training samples, the corresponding sample
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TABLE III
CLASSIFICATION ACCURACY (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED BY DIFFERENT CLASSIFIERS FOR THE AVIRIS INDIAN PINES IMAGE WITH

10% TRAINING SAMPLES PER CLASS

Class LBP-KSRC LBP-WSRC LBP-SVM NRS [40] cdSRC [43] Gabor-WKSRC WKSRC CoWKSRC

1 95.22 ± 3.18 92.36 ± 3.18 94.44 ± 7.89 72.50 ± 4.97 76.67 ± 8.12 62.92 ± 9.25 86.67 ± 9.50 96.67 ± 3.78
2 92.87 ± 0.89 95.87 ± 1.16 94.75 ± 0.65 68.82 ± 1.33 79.40 ± 2.03 84.02 ± 1.94 97.07 ± 1.44 97.67 ± 1.14
3 89.29 ± 2.43 90.07 ± 0.87 96.67 ± 0.67 52.93 ± 3.64 71.15 ± 3.03 81.55 ± 5.72 97.95 ± 2.15 97.01 ± 2.69
4 90.00 ± 3.12 95.73 ± 3.43 93.89 ± 0.27 39.14 ± 7.88 69.05 ± 8.30 89.90 ± 4.09 98.10 ± 1.58 98.10 ± 1.65
5 90.90 ± 1.37 94.41 ± 2.66 94.04 ± 1.75 90.43 ± 2.88 93.42 ± 0.89 81.16 ± 2.81 96.73 ± 1.88 95.30 ± 3.97
6 95.39 ± 1.86 96.28 ± 2.10 96.26 ± 0.83 95.00 ± 1.53 98.42 ± 0.34 90.03 ± 2.06 97.35 ± 1.06 98.36 ± 1.09
7 89.86 ± 5.02 91.30 ± 4.13 93.21 ± 1.62 49.57 ± 22.51 32.17 ± 14.29 71.30 ± 13.61 90.43 ± 16.95 92.17 ± 13.19
8 98.17 ± 0.80 99.70 ± 0.19 98.82 ± 0.13 98.64 ± 0.48 99.82 ± 0.19 97.50 ± 1.66 100 ± 0.00 100 ± 0.00
9 67.04 ± 4.56 66.67 ± 9.03 60.81 ± 8.49 34.44 ± 7.24 70.00 ± 23.77 42.22 ± 12.17 47.78 ± 12.79 68.89 ± 6.33
10 94.07 ± 2.05 96.21 ± 1.37 95.67 ± 1.89 51.76 ± 2.54 80.71 ± 1.10 84.45 ± 2.48 97.91 ± 2.38 97.89 ± 2.36
11 94.69 ± 0.32 96.15 ± 0.28 96.03 ± 0.51 94.65 ± 0.74 85.28 ± 2.05 86.79 ± 1.34 99.42 ± 0.29 99.12 ± 0.41
12 91.85 ± 1.26 94.21 ± 1.34 93.68 ± 2.14 63.55 ± 3.76 81.92 ± 2.12 83.44 ± 3.18 98.70 ± 1.28 97.79 ± 1.34
13 93.16 ± 5.79 98.07 ± 1.61 98.30 ± 1.22 95.79 ± 2.07 99.47 ± 0.02 95.89 ± 3.23 98.00 ± 2.09 100 ± 0.00
14 96.83 ± 0.78 98.71 ± 0.42 97.89 ± 0.1 96.60 ± 0.84 95.74 ± 1.44 97.66 ± 1.23 99.42 ± 0.52 99.85 ± 0.21
15 95.86 ± 1.22 97.56 ± 0.74 95.68 ± 0.35 61.99 ± 5.41 74.33 ± 6.37 91.40 ± 5.51 96.55 ± 2.37 98.54 ± 0.88
16 82.35 ± 8.24 89.02 ± 3.75 89.20 ± 4.44 84.71 ± 5.88 85.88 ± 7.30 96.71 ± 3.26 69.65 ± 6.83 86.12 ± 6.30
OA 93.63 ± 0.21 96.01 ± 0.37 95.88 ± 0.35 79.27 ± 0.63 85.35 ± 0.53 87.66 ± 0.47 97.92 ± 0.34 98.22 ± 0.28
AA 92.78 ± 0.34 93.29 ± 2.01 92.90 ± 1.05 71.91 ± 2.13 80.84 ± 2.52 83.56 ± 1.75 91.98 ± 1.49 95.22 ± 0.78
κ 93.43 ± 0.24 95.56 ± 0.35 95.49 ± 0.40 75.88 ± 0.75 83.26 ± 0.59 85.95 ± 0.53 97.63 ± 0.39 97.97 ± 0.32

Fig. 4. Representation coefficients obtained by (a) CoWKSRC-RBF , (b) CoWKSRC-linear, (c) CoWKSRC-HI . Normalized residuals obtained by
(d) CoWKSRC-RBF . (e) CoWKSRC-linear, and (f) CoWKSRC-HI .

index for class 8 (marked by red color) is from 386 to 435.
The reconstruction error (i.e., normalized residual) for each
class of the proposed method with different kernels are given in
Fig. 4(d)–(f), respectively. From the figure, it can be seen that
all the spatial region-level kernel methods can classify the
test pixel properly, but the obtained �1-norm coefficients in
different region-level kernel feature space are different. The
weight coefficients in HI-kernel feature space are uniformly
distributed among the dictionary atoms from different classes,
and it is evident that the determination in HI-kernel space
is more robust for classification task than in linear- and
RBF -kernel feature space. Moreover, the label of this test
pixel is determined by the minimum residual criterion. The OA

performance of the proposed CoWKSRC with different kernel
methods is reported in Table IV. The HI kernel-based method
achieves the best classification performance.

B. Experiment on ROSIS University of Pavia Image

The second HSI was acquired by the Reflective Optics
System Imaging Spectrometer-03 (ROSIS-03) sensor, which
covers the area over the University of Pavia, Italy, with a pixel
response in 115 spectral channels (with spectral range from
0.43 to 0.86 μm) [1]. After removing the 12 noisy bands, the
remaining 103 channels are reserved. The image consists of
610× 340 pixels with a spatial resolution of 1.3 m per pixel, and

Authorized licensed use limited to: Nanjing University. Downloaded on January 15,2024 at 11:31:10 UTC from IEEE Xplore.  Restrictions apply. 



GAN et al.: CLASS-ORIENTED WEIGHTED KERNEL SPARSE REPRESENTATION WITH REGION-LEVEL KERNEL FOR HYPERSPECTRAL 1125

Fig. 5. University of the Pavia image: (a) False color image. (b) Ground-truth map (with nine classes); and the classification map obtained by: (c) LBP-KSRC,
(d) LBP-WSRC, (e) LBP-SVM, (f) NRS, (g) cdSRC, (h) Gabor-WKSRC, (i) WKSRC, and (j) CoWKSRC.

TABLE IV
OVERALL CLASSIFICATION ACCURACY OBTAINED BY THE PROPOSED

COWKSRC WITH MULTIPLE KERNEL METHODS AS A FUNCTION OF THE

NUMBER OF TRAINING SAMPLES PER CLASS FOR AVIRIS INDIAN PINES IMAGE

CoWKSRC linear RBF HI

5% 91.87 ± 0.57 89.85 ± 0.41 93.49 ± 0.63
10% 95.70 ± 0.74 94.11 ± 0.36 98.22 ± 0.28
15% 97.51 ± 0.62 96.26 ± 0.56 98.71 ± 0.51
20% 97.94 ± 0.68 96.90 ± 0.45 98.84 ± 0.39

TABLE V
NUMBER OF TRAINING AND TESTING SAMPLES FOR THE UNIVERSITY

OF PAVIA IMAGE

contains nine ground-truth classes. The false color composite
image and the ground-truth map are shown in Fig. 5(a) and (b),
respectively. We randomly choose 60 samples for each class as
the training samples and use the remaining as the test samples
(shown in Table V).

Fig. 6. Parameter tuning of λ and σ for the proposed CoWKSRC for the
University of Pavia.

Fig. 6 illustrates the OA performance of the proposed
CoWKSRC algorithm versus different λ and σ. We set λ =
1e − 4 and σ = 4 for the University of Pavia image. Likewise,
Table VI gives the OA performance of the proposed CoWKSRC-
based region-level kernel with three different kernel methods
under different training sample sizes. It is apparent that the
HI-based method achieves the best performance among the
three kernel-based methods. The numerical classification re-
sults using LBP-KSRC, LBP-WSRC, LBP-SVM, NRS, cd-
SRC, Gabor-WKSRC, WKSRC, and CoWKSRC are summa-
rized in Table VII. Fig. 5(c)–(j) illustrates the corresponding
classification maps obtained by various methods. As is shown
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TABLE VII
CLASSIFICATION ACCURACY (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED BY DIFFERENT CLASSIFIERS OF ROSIS UNIVERSITY OF PAVIA IMAGE

WITH 60 TRAINING SAMPLES PER CLASS

Class LBP-KSRC LBP-WSRC LBP-SVM NRS [40] cdSRC [43] Gabor-WKSRC WKSRC CoWKSRC

1 87.65 ± 2.16 84.16 ± 3.74 74.14 ± 5.70 83.55 ± 0.79 84.15 ± 3.80 69.01 ± 2.09 84.82 ± 2.74 85.51 ± 2.14
2 82.58 ± 1.26 87.08 ± 1.70 94.02 ± 1.05 78.49 ± 4.68 82.34 ± 4.23 83.73 ± 1.80 93.11 ± 2.33 92.57 ± 2.72
3 96.41 ± 1.43 96.07 ± 1.48 96.25 ± 1.07 75.64 ± 3.74 76.32 ± 5.65 92.32 ± 2.41 96.75 ± 1.53 97.05 ± 1.30
4 66.48 ± 3.28 74.76 ± 2.47 90.08 ± 3.37 95.50 ± 2.62 95.97 ± 1.04 59.21 ± 2.34 79.67 ± 4.45 83.75 ± 2.91
5 93.56 ± 1.72 94.16 ± 2.64 97.17 ± 0.93 99.60 ± 0.15 99.58 ± 0.12 97.17 ± 2.28 94.21 ± 1.87 94.69 ± 2.46
6 98.61 ± 1.14 98.37 ± 1.39 95.69 ± 0.40 88.16 ± 3.41 85.64 ± 4.51 90.20 ± 3.20 97.14 ± 2.37 95.87 ± 3.10
7 98.30 ± 1.40 98.50 ± 0.85 95.04 ± 2.52 91.42 ± 2.67 92.05 ± 1.83 93.40 ± 4.13 98.08 ± 1.34 99.24 ± 0.53
8 94.46 ± 2.81 94.82 ± 2.02 94.29 ± 1.31 84.11 ± 5.80 83.35 ± 4.48 88.55 ± 5.63 97.17 ± 1.25 95.97 ± 1.06
9 83.29 ± 3.41 85.52 ± 2.76 74.63 ± 6.56 99.41 ± 0.20 99.59 ± 0.23 88.32 ± 1.33 81.24 ± 3.08 83.63 ± 3.16
OA 86.62 ± 0.50 88.70 ± 0.95 90.69 ± 0.79 83.44 ± 1.98 84.95 ± 1.57 82.08 ± 1.05 91.80 ± 1.16 91.82 ± 1.04
AA 89.04 ± 0.44 90.38 ± 0.58 90.02 ± 0.94 88.43 ± 0.22 88.78 ± 0.28 84.66 ± 1.11 91.35 ± 0.66 92.03 ± 0.51
κ 82.71 ± 0.62 85.34 ± 1.19 88.24 ± 1.04 78.79 ± 2.33 80.57 ± 1.85 76.76 ± 1.31 89.23 ± 1.48 89.27 ± 1.32

TABLE VI
OVERALL CLASSIFICATION ACCURACY OBTAINED BY THE PROPOSED

COWKSRC WITH MULTIPLE KERNEL METHODS AS A FUNCTION OF THE

NUMBER OF TRAINING SAMPLES PER CLASS FOR UNIVERSITY OF PAVIA IMAGE

CoWKSRC linear RBF HI

40 81.90 ± 1.09 81.29 ± 1.32 88.35 ± 1.11
50 84.77 ± 1.21 84.80 ± 0.99 91.33 ± 1.43
60 85.09 ± 1.37 85.30 ± 1.07 91.82 ± 1.04
70 87.52 ± 1.14 88.19 ± 1.20 94.48 ± 0.98

TABLE VIII
NUMBER OF TRAINING AND TESTING SAMPLES FOR THE KENNEDY SPACE

CENTER IMAGE

in Table VII, the proposed methods (WKSRC and CoWK-
SRC) based on spatial region-level kernel outperform other
spectral-based (i.e., NRS and cdSRC) methods in terms of clas-
sification performance. Based on the same spatial feature, the
proposed methods have better classification results than other
classifiers based LBP methods. Based on different spatial ker-
nel feature, under the same classifier, region-level method (i.e.,
WKSRC) has a much higher accuracy than Gabor-filtering ker-
nel method (i.e., Gabor-WKSRC).

C. Experiment on AVIRIS Kennedy Space Center Image

The third HSI is gathered by AVIRIS over the Kennedy Space
Center (KSC), Florida, USA, on March, 1996. This image
contains 224 bands whose wavelength covers the spectral range

Fig. 7. Parameter tuning of λ and σ for the proposed CoWKSRC for Kennedy
Space Center.

TABLE IX
OVERALL CLASSIFICATION ACCURACY OBTAINED BY THE PROPOSED

COWKSRC WITH MULTIPLE KERNEL METHODS AS A FUNCTION

OF THE NUMBER OF TRAINING SAMPLES PER CLASS FOR KENNEDY SPACE

CENTER IMAGE

CoWKSRC Linear RBF HI

5 77.23 ± 1.28 66.89 ± 1.76 81.75 ± 1.39
10 91.52 ± 1.67 70.32 ± 2.32 95.39 ± 1.43
15 96.85 ± 2.01 71.58 ± 1.98 98.90 ± 1.82
20 98.26 ± 1.54 73.48 ± 2.15 99.62 ± 1.61

from 0.4 to 2.5 μm, and the image size is 512 × 614 pixels with
a spatial resolution of 18 m. After removing water absorption
and low signal-to-noise bands, a total of 176 bands remained
for classification. This scene contains 13 ground-truth classes.
As is shown in Table VIII, 10 samples per class are chosen
as training samples and the remaining used for testing. The
false color image and ground-truth map are shown in Fig. 8(a)
and (b).

Fig. 7 illustrates the influence of λ and σ on the OA perfor-
mance of the proposed region-level kernel method (CoWK-
SRC). As shown in Table IX, the HI-based method has a
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Fig. 8. KSC image: (a) False color image. (b) Ground-truth map (with 13 classes); and the classification map obtained by: (c) LBP-KSRC, (d) LBP-WSRC,
(e) LBP-SVM, (f) NRS, (g) cdSRC, (l) Gabor-WKSRC, (m) WKSRC, and (n) CoWKSRC.

TABLE X
CLASSIFICATION ACCURACY (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED BY DIFFERENT CLASSIFIERS OF KENNEDY SPACE CENTER IMAGE WITH TEN

TRAINING SAMPLES PER CLASS

Class LBP-KSRC LBP-WSRC LBP-SVM NRS [40] cdSRC [43] Gabor-WKSRC WKSRC CoWKSRC

1 96.32 ± 0.26 91.21 ± 3.34 96.80 ± 0.36 82.77 ± 10.00 94.11 ± 3.57 84.05 ± 5.41 91.24 ± 6.85 88.28 ± 9.28
2 87.70 ± 8.94 84.12 ± 9.66 90.70 ± 5.07 85.41 ± 5.68 87.38 ± 5.38 83.61 ± 10.61 84.72 ± 8.63 86.35 ± 12.22
3 79.00 ± 4.17 96.75 ± 5.63 92.28 ± 3.14 89.11 ± 4.01 88.86 ± 5.60 89.92 ± 14.19 94.88 ± 7.39 98.21 ± 2.52
4 95.73 ± 5.00 95.73 ± 3.84 90.91 ± 3.79 45.54 ± 14.98 67.93 ± 5.27 96.94 ± 3.49 86.61 ± 10.26 86.03 ± 9.45
5 93.60 ± 11.09 100 ± 0.00 93.60 ± 5.09 67.68 ± 9.77 85.70 ± 6.92 99.07 ± 2.07 96.16 ± 8.59 100 ± 0.00
6 99.54 ± 0.79 98.45 ± 0.36 100 ± 0.00 57.53 ± 11.45 75.80 ± 20.09 90.87 ± 5.05 99.91 ± 0.20 100 ± 0.00
7 95.31 ± 1.53 100 ± 0.00 100.00 ± 0.00 91.16 ± 5.70 95.58 ± 2.72 100 ± 0.00 100 ± 0.00 100 ± 0.00
8 66.11 ± 8.61 82.82 ± 7.17 77.51 ± 9.51 74.44 ± 6.02 87.46 ± 1.28 93.25 ± 9.91 91.69 ± 8.75 88.22 ± 10.66
9 91.44 ± 4.93 94.77 ± 8.22 87.84 ± 5.06 89.29 ± 13.86 99.41 ± 0.69 89.96 ± 7.61 97.69 ± 2.42 98.08 ± 4.19
10 89.59 ± 4.59 98.98 ± 1.76 95.43 ± 5.67 87.46 ± 2.85 98.58 ± 0.29 98.68 ± 2.81 91.37 ± 15.64 100 ± 0.00
11 65.53 ± 3.60 97.15 ± 3.39 99.35 ± 1.13 95.01 ± 3.17 97.16 ± 0.84 96.82 ± 3.80 95.89 ± 4.49 99.32 ± 1.16
12 79.58 ± 0.82 82.76 ± 5.92 80.32 ± 3.03 79.55 ± 3.39 97.69 ± 1.31 93.43 ± 7.56 95.50 ± 7.55 97.20 ± 3.59
13 97.26 ± 1.12 100 ± 0.00 100 ± 0.00 97.93 ± 0.00 100 ± 0.00 97.60 ± 2.26 100 ± 0.00 99.98 ± 0.01
OA 87.68 ± 0.63 93.48 ± 1.73 92.70 ± 0.87 83.78 ± 2.19 93.27 ± 0.93 92.84 ± 1.41 94.64 ± 1.70 95.39 ± 1.43
AA 87.78 ± 0.47 93.98 ± 1.83 92.67 ± 1.00 80.22 ± 2.09 90.44 ± 2.06 93.40 ± 2.09 94.28 ± 1.50 95.51 ± 1.06
κ 86.52 ± 0.71 92.67 ± 1.92 91.86 ± 0.98 81.96 ± 2.42 92.50 ± 1.05 92.04 ± 1.58 94.04 ± 1.89 94.87 ± 1.59

TABLE XI
VARIANTS OF THE PROPOSED COWKSRC

Notation Characteristic Description

CoWKSRC-S Nonspatial Weighted Kernel SRC based on spectral feature
via Class-oriented Optimization

CoWSRC Nonkernel Weighted SRC based on LBP histogram feature
via Class-oriented Optimization

CoKSRC Nonweighted Kernel SRC with LBP-based region-level kernel
via Class-oriented Optimization

WKSRC Global
Optimization

Weighted Kernel SRC with LBP-based
region-level kernel via Global Optimization

better classification performance than the other two kernel-based
methods. The numerical classification results of the proposed
methods (WKSRC and CoWKSRC) with several baseline clas-
sifiers (i.e., LBP-KSRC, LBP-WSRC, LBP-SVM, NRS, and
cdSRC) on the Kennedy Space Center Image are summarized
in Table X. Fig. 8(c)–(j) shows the corresponding classification
maps for various methods. Among all the SR-based methods,
the proposed spatial region-level kernel methods (WKSRC and
CoWKSRC) yield the highest result. Moreover, the proposed
methods have a better classification performance than other
LBP-feature-based methods. Depend on different spatial fea-
tures and with the similar classifier, region-level kernel methods
(i.e., WKSRC and CoWKSRC) have a better performance than
Gabor-filtering feature method.
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TABLE XII
OA RESULTS (%) OBTAINED BY MULTIPLE VARIANTS OF COWKSRC WITH DIFFERENT PERTCENT (OR NUMBER) OF DICTIONARY ATOMS

Methods CoWKSRC-S CoWSRC CoKSRC WKSRC CoWKSRC

Indian Pines %5 73.90 ± 2.12 82.87 ± 0.22 94.78 ± 0.78 94.90 ± 0.61 95.36 ± 0.34
%10 77.78 ± 1.73 83.08 ± 0.16 97.32 ± 0.16 97.55 ± 0.16 98.06 ± 0.06
%15 79.10 ± 1.61 84.21 ± 0.49 97.40 ± 0.32 97.46 ± 0.30 98.98 ± 0.20
%20 79.72 ± 1.56 84.99 ± 1.95 98.06 ± 0.11 98.28 ± 0.12 99.06 ± 0.15

University of Pavia 40 63.33 ± 1.77 87.34 ± 2.20 87.98 ± 2.64 88.65 ± 1.32 89.38 ± 1.05
50 64.36 ± 2.09 89.32 ± 1.97 90.51 ± 0.99 90.83 ± 0.96 91.06 ± 1.11
60 65.25 ± 1.91 90.31 ± 1.49 91.56 ± 1.16 91.88 ± 1.10 92.21 ± 0.84
70 65.47 ± 2.14 91.63 ± 1.02 92.39 ± 0.88 92.64 ± 0.99 94.68 ± 0.49

KSC 5 73.30 ± 1.77 83.97 ± 0.56 84.51 ± 0.62 85.15 ± 0.31 86.37 ± 0.15
10 77.25 ± 1.25 93.23 ± 0.49 93.78 ± 0.39 94.13 ± 0.18 95.32 ± 0.24
15 80.38 ± 0.86 96.40 ± 0.37 96.82 ± 0.46 97.03 ± 0.34 98.15 ± 0.23
20 80.18 ± 1.19 97.12 ± 0.69 98.21 ± 0.58 98.63 ± 0.22 99.04 ± 0.17

D. Effect of Combining Multiple Strategies

In this section, we investigate the performance of each compo-
nent (i.e., spatial feature, region-level kernel, weighted-strategy,
and class-oriented optimization) in CoWKSRC. We refer these
components to CoWKSRC-S, CoWSRC, CoKSRC, and WK-
SRC, respectively. The descriptions are listed in Table XI. For
the Indian Pines image, 5%, 10%, 15%, and 20% of the labeled
samples are randomly chosen as the training dictionary, and the
remaining samples are used for the test. For the University of
Pavia image, 40, 50, 60, and 70 atoms per class are selected as
the training dictionary. For the KSC image, the number of dic-
tionary atoms per class is varied from 5 to 20. From Table XII,
without spatial feature, the OA results decrease significantly
for the three HSI, thus, demonstrating the importance of LBP.
The region-level kernel also plays a significant role in the pro-
posed method. Without considering the region-level kernel, the
OA of CoWKSRC is decreased from 95.36% to 89.21% for
the Indian Pines image (5% of the labeled samples). WKSRC
shows slightly better results than CoKSRC, which indicates
that class-oriented optimization is slight more important than
weighted strategy. In conclusion, by integrating the components
as mentioned above, our proposed method achieves the best
performance.

E. Computational Time

Finally, we compare the computational time of the proposed
WKSRC and its class-oriented variants. All the experiments are
carried out using MATLAB R2016a on Intel(R) Core(TM) i7-
4790 CPU PC machine with 16 GB of RAM. To investigate the
superiority of class-oriented based methods, the GPU times (in
seconds) of two pairwise methods, i.e., WKSRC, WSRC, and its
class-oriented variants (CoWKSRC and CoWSRC), are listed
in Table XIII, XIV, and XV with different sizes (or percent) of
training samples on Indian Pines, University of the Pavia, and
KSC images, respectively. The dominant computational time of
the four methods come from the learning of sparse coefficients
via weighted �1-norm regularization problem in the region-level
kernel or spectral space, which is implemented by a weighted
version of LARS via the SPArse Modeling Software (SPAMS)

TABLE XIII
COMPUTATIONAL TIME (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED

BY DIFFERENT CLASSIFIERS AS A FUNCTION OF THE PERCENT OF TRAINING

SAMPLES PER CLASS FOR THE INDIAN PINES IMAGE

CoWKSRC WKSRC CoWSRC WSRC

5% 38.56 ± 0.67 104.18 ± 1.41 33.46 ± 0.27 42.99 ± 0.20
10% 114.11 ± 0.63 400.70 ± 2.20 64.58 ± 1.62 132.35 ± 0.41
15% 272.24 ± 1.86 906.98 ± 1.75 100.07 ± 0.69 250.26 ± 0.79
20% 490.18 ± 2.67 1652 ± 5.18 131.20 ± 1.71 392.13 ± 3.54

TABLE XIV
COMPUTATIONAL TIME (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED

BY DIFFERENT CLASSIFIERS AS A FUNCTION OF THE NUMBER OF TRAINING

SAMPLES PER CLASS FOR THE UNIVERSITY OF PAVIA IMAGE

CoWKSRC WKSRC CoWSRC WSRC

40 125.31 ± 4.03 356.89 ± 19.38 118.43 ± 4.46 153.18 ± 2.53
50 183.71 ± 3.41 549.20 ± 22.02 148.77 ± 8.92 216.38 ± 5.05
60 285.88 ± 11.32 740.56 ± 31.04 234.08 ± 6.27 186.74 ± 5.15
70 386.93 ± 7.34 952.95 ± 41.64 219.65 ± 25.32 289.65 ± 6.03

TABLE XV
COMPUTATIONAL TIME (AVERAGED ON TEN MONTE CARLO RUNS) OBTAINED

BY DIFFERENT CLASSIFIERS AS A FUNCTION OF THE NUMBER OF TRAINING

SAMPLES PER CLASS FOR THE KENNEDY SPACE CENTER IMAGE

CoWKSRC WKSRC CoWSRC WSRC

5 2.71 ± 0.06 3.14 ± 0.20 2.44 ± 0.14 2.72 ± 0.13
10 4.82 ± 0.07 5.80 ± 0.27 4.36 ± 0.09 5.23 ± 0.10
15 7.63 ± 0.11 9.54 ± 0.32 7.49 ± 0.02 6.21 ± 0.08
20 10.35 ± 0.19 13.53 ± 0.57 7.91 ± 0.28 10.21 ± 0.35

package [47], [48]. Although the proposed spatial region-level
kernel method achieves similar classification performance with
its class-oriented variant, the class-oriented variant is faster than
WKSRC for the three HSIs (seen in Tables XIII, XIV, and XV).
That is because CoWKSRC adopt the class-oriented strategy
that leads to the monotonical decrease of the objective function
and finds the global minimum without any risk of falling into
the local minimum.
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V. CONCLUSION

In this paper, we proposed a novel class-oriented WKSRC
method based on region-level kernel feature for HSI classifica-
tion. In the proposed method, region-level kernels are applied
to map original spectral space into a high-dimensional kernel
space to capture the nonlinear structure of the extracted LBP his-
togram feature. To further strengthen the discriminative ability,
we combine region-level kernels and locality structure informa-
tion based on Gaussian kernel distance into a unified SR-based
framework, and propose a novel class-oriented WKSRC method
solved by class specific weighted �1-minimization problem to
obtain more discriminating weighting coefficients for HSI clas-
sification. Experimental results on three HSI demonstrate that
the proposed algorithms yield better classification performance
compared with other state-of-the-art classifiers. The future work
will focus on how to construct a more effective multiple kernels
for the proposed framework.
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