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Dissimilarity-Weighted Sparse Representation
for Hyperspectral Image Classification

Le Gan, Junshi Xia, Member, IEEE, Peijun Du, Senior Member, IEEE, and Zhigang Xu

Abstract— To improve the capability of a traditional sparse
representation-based classifier (SRC), we propose a novel
dissimilarity-weighted SRC (DWSRC) for hyperspectral image
(HSI) classification. In particular, DWSRC computes the weights
for each atom according to the distance or dissimilarity infor-
mation between the test pixel and the atoms. First, a locality
constraint dictionary set is constructed by the Gaussian kernel
distance with a suitable distance metric (e.g., Euclidean distance).
Second, the test pixel is sparsely coded over the new weighted
dictionary set based on the �1-norm minimization problem.
Finally, the test pixel is classified by using the obtained sparse
coefficients with the minimal residual rule. Experimental results
on two widely used public HSIs demonstrate that the proposed
DWSRC is more efficient and accurate than other state-of-the-art
SRCs.

Index Terms— Dissimilarity-weighted, distance metrics, hyper-
spectral image (HSI) classification, locality constraint dictionary,
sparse representation.

I. INTRODUCTION

CLASSIFICATION of hyperspectral images (HSIs)
plays significant roles in several applications, including

environmental monitoring [1], geological explorations [2],
precision farming [3], and national defenses [4]. In the
HSIs, each pixel is a high-dimensional vector and its entries
represent the spectral response of hundreds of spectral bands,
spanning from the visible to the infrared wavelengths [5].
Wang et al. [6] proposed a manifold ranking-based band
selection method for HSI classification. Recently, a sparse
modeling technique has been widely used in [7]–[10].
Peng et al. [7] proposed a general framework to solve
the large-scale and out-of-sample clustering problems for
representation-based subspace clustering. Peng et al. [8]
proposed a novel unsupervised subspace learning method,
which automatically determines the optimal dimension of
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feature space and obtains the low-dimensional representation
of a given data set. Under the framework of graph embedding,
Peng et al. [9] developed two algorithms by embedding the
L2-graph into a low-dimensional space for robust subspace
clustering and subspace learning. The basic idea is that
a test pixel can be sparsely approximated as a linear
combination of a few atoms from the entire training
dictionary via the �0-norm or �1-norm regularization.
The final label of the test pixel is assigned to the class whose
subdictionary provides the smallest representation error.
In order to capture the nonlinear similarity of samples, a kernel
version of sparse representation-based classifier (KSRC)
is proposed in [11]. KSRC maps the samples into a
high-dimensional kernel-induced feature space first and then
sparse representation-based classifier (SRC) is performed in
this new feature space by utilizing kernel trick. To alleviate the
high computational complexity of SRC via �1-norm regulariza-
tion, Zhang et al. [12] proposed a collaborative representation-
based classifier (CRC) via �2-norm regularization.

In the hyperspectral remote sensing community,
Chen et al. [13] introduced a joint sparse representation
classification (JSRC) framework via simultaneous orthogonal
matching pursuit (OMP). Furthermore, the kernel version
of JSRC is exploited in [14]. Liu et al. [15] proposed a
spatial–spectral KSRC via �1-norm minimization to improve
the performance of SRC. Li and Du [16] proposed a joint
within-class CRC, investigating the relationship of the
hyperspectral neighbor. Furthermore, they proposed a fused
representation-based classifier (FRC) by combining the CRC
and the SRC. The objective of the FRC is to integrate
the advantages of the CRC and the SRC to improve the
classification ability. Yuan et al. [17] proposed the spectral–
spatial classification scheme, which focuses on multitask joint
sparse representation (MJSR) and a stepwise Markov random
field framework.

Data locality has been a critical issue in many machine
learning applications. Wang et al. [18] proposed a local-
ity constraint distance metric learning for traffic congestion
detection. In [19], a multistage clustering strategy was aimed
to discover collective motions with both local and global con-
sistency along time. It should be emphasized that the typical
SRC or CRC model does not consider the distance or dissim-
ilarity relationship between the test pixel and each individual
dictionary atoms. Specifically, dictionary atoms, which are
closer or more similar to the test pixel, play a greater role in
representing the test pixel. Once such a dissimilarity between
a dictionary atom and the test pixel is determined, the signif-
icance of these atoms in representing the test pixel should
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be known. To enhance the discriminative ability of SRC,
Lu et al. [20] proposed weighted SRC (WSRC) by using the
weighted �1-minimization problem to consider the dissimi-
larity information. A distance-weighted CRC, namely nearest
regularized subspace (NRS) [21], is also proposed to exploit
the spectral similarity [i.e., Euclidean distance (ED)] to control
the regularization term.

Extended by the idea of WSRC, we propose a dissimilarity-
WSRC (DWSRC) for HSIs, which employs a locality
constraint dictionary to represent the test pixel by multiple
dissimilarity measures. The dissimilarity can be measured
using the distances, such as ED, Mahalanobis distance (MD),
spectral angle distance (SAD), and χ2 distance (χ2). The
classification framework contains the following main stages:

1) to compute the weight by the dissimilarity between the
dictionary atoms and the test pixel;

2) to construct a locality-constrained dictionary set;
3) to represent the test pixel over the new weighted dic-

tionary atoms via the standard �1-norm minimization
problem;

4) to determine the label of the test pixel for classification
by using the minimal residual rule.

The rest of this letter is structured as follows. The proposed
DWSRC is described in Section II. The effectiveness of the
DWSRC is validated by conducting several experiments on
two HSIs in Section III. Finally, Section IV summarizes this
letter and makes some concluding remarks.

II. DISSIMILARITY-WEIGHTED SPARSE

REPRESENTATION CLASSIFIER

A. General SRC

Let D = [D1,D2, . . . ,DC ] ∈ RB×N denote a class-
specific dictionary set that contains C-class training samples,
where N = ∑C

c=1 Nc (Nc denotes the number of samples in
the cth class) and B denotes the number of spectral bands. For
a test pixel y ∈ RB , the representation coefficients of y ∈ RB

over dictionary D via SRC can be obtained by solving the
following �1-minimization problem:

α̂ = arg min
α

‖y − Dα‖2 + λ‖α‖1 (1)

where λ denotes the �1-regularization parameter. After obtain-
ing the sparse coefficients α, the label of pixel y is determined
by the minimal residual between y and its C approximation
from each subdictionary Dc

class(y) = arg min
c=1,...,C

‖y − Dcδc(α)‖2
2 (2)

where δc is the indicator function [22] that extracts coefficients
related with the cth class.

B. Pixel Dissimilarity and Multiple Distance Metrics
In HSIs, neighboring pixels usually consist of a similar

material, and their spectral signatures are highly correlated.
Hence, the spectral dissimilarity between the pairwise spectral
vector reflects the approximation of each other, and a smaller
value of dissimilarity denotes a higher probability that the
two samples belong to the same class. In [20], they proposed
a distance-WSRC method, which can adaptively exploit the

dissimilarity information between the test sample y and each
dictionary atoms d i . A larger dist (y, d i ) characterizes a
larger dissimilarity between the test sample and the training
dictionary. Thus, WSRC can generate more discriminative
sparse coefficients that can be used to reconstruct the test
sample more robustly. Multiple well-performing distances are
available to quantify the dissimilarity between the test sample
and each dictionary atoms, including ED, MD, SAD, and χ2.

C. Proposed DWSRC

To find a robust representation of the test pixel y of HSIs,
we propose the DWSRC classifier considering pixel locality
information based on the dissimilarity between y and each
atom d i .

First, we adopt the Gaussian kernel to capture the nonlinear
information within the given HSI. Let wi define the locality
weight matrix

wi = exp

(
−dist (y, d i )

σ

)
(3)

where dist (y, d i ) denotes the distance function between
y and d i , and σ denotes the parameter. We further nor-
malize {wi }i=1,...,N in the range (0, 1] by subtracting max
{wi }i=1,...,N from {wi }i=1,...,N .

Second, after obtaining the weights w = {wi }i=1,...,N

between y and each atoms di , we construct a locality-
constrained dictionary set D′ = [D′

1, . . . ,D
′
c, . . . ,D

′
C ] ∈

RB×N , and D′
c = [wc1dc1, wc2dc2, . . . , wcNc dcNc ] denotes

the weighted class-specific dictionary associated with
the cth class.

Third, we code y over the new weighted dictionary set D′

by solving the following �1-minimization problem:
α̂ = arg min

α
‖y − D′α‖2 + λ‖α‖1. (4)

Fourth, after obtaining the sparse coefficient vector
α = [α1, α2, . . . , αN ]T , the label of y can generally be
determined by the minimal residual rule

class(y) = arg min
c=1,...,C

‖y − Dc
′δc(α)‖2

2. (5)

The proposed DWSRC is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
DWSRC on two standard HSIs, including Indian Pines and
PaviaU image. The Indian image is acquired by the AVIRIS
sensor from JPL, NASA, on June 12, 1992. It generates
220 bands and 20 noisy bands are removed before classi-
fication. The spatial dimension is 145 × 145 with a spatial
resolution of 20 m, and it contains 16 ground truth classes. The
PaviaU image covering an urban area was obtained from the
ROSIS-03 sensor with a spatial resolution of 1.3 m. It contains
610 × 340 pixels with 115 spectral bands, in which 12 noisy
bands are removed. There are nine ground truth classes of
interests. For the two HSIs, overall accuracy (OA), average
accuracy (AA), and κ are used to evaluate the classification
performance. All the tests are repeated ten times to get the
averaged results. All the tests are carried out using MATLAB
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TABLE I

CLASSIFICATION RESULTS (MEAN ± STD-DEV PERCENT) OBTAINED BY DIFFERENT METHODS ON THE
INDIAN PINES IMAGE VERSUS A DIFFERENT SIZE OF DICTIONARY ATOMS FOR PER CLASS

Algorithm 1 Proposed DWSRC for HSIs
1: Input: A initial dictionary of training samples D =

[D1,D2, . . . ,DC ] ∈ RB×N for C class; a test pixel set
Y = { ym}m=1,...,M ; sparsity regularization λ

2: for each test pixel ym do
3: 1) Calculate the weight matrix wi between ym and each

dictionary atom d i via Gaussian kernel distance with a
suitable distance metric;

4: 2) Generate the locality-constrained dictionary set D′ =
[D′

1, . . . ,D
′
c, . . . ,D

′
C ] ∈ RB×N ,

5: 3) Sparsely code ym over the new weighted dictionary
D′

via �1-norm minimization according to Eq. (4).
6: 4) Identify the final class of ym with the minimal residual

rule according to Eq. (5).
7: end for
8: Output: An 2-D map which records the labels of the test

sample set Y

R2016a on Intel Core i7-4790 CPU PC machine with
16 GB of RAM, and we use the SPArse Modeling Software
package [23] to solve the �1-minimization problem.

For comparison, we have implemented the OMP
(i.e., �0-norm) [24], SRC [22], CRC [12], FRC [25],
KSRC [11], and WSRC [20]. The Gaussian kernel is adopted
for the KSRC, and the width is set to be the averaged distance
of the dictionary atoms [i.e., σ = (1/N2)‖d i − d j‖, where N
denotes the number of dictionary atoms]. The sparsity level
of the OMP is set to be 10. The regularization parameters
for the aforementioned classifiers are learned by cross
validation. Fig. 1 plots the results of DWSRC with different
regularization parameters (λ) on the Indian Pines (with the
χ2 distance) and PaviaU images (with the SAD distance),
respectively. From Fig. 1, the optimized values of λ are
1e − 2 and 4e − 2 for the Indian Pines and PaviaU images,
respectively.

First, we investigate the classification performance
(OA, AA, and κ) of the proposed DWSRC as well
as the compared methods. For the Indian Pines image,
5%, 10%, 15%, and 20% labeled pixel from the ground
truth are chosen as the initial dictionary atoms, and the
remaining pixels are used for the test. For the PaviaU image,
0.25%, 0.5%, 1%, and 2% labeled pixels are selected as the

Fig. 1. Sensitivity to the change of λ on (a) Indian Pines image
and (b) PaviaU image.

initial dictionary atoms and the remaining pixels are used for
the test purpose. The results are presented in Tables I and II.
Please note that we only present the best results in four
distance metrics. As shown in Tables I and II, DWSRC-χ2

and DWSRC-SAD achieve the best results for Indian Pines
and PaviaU image in all the cases. For both the images, CRC
is superior to SRC, and FRC outperforms two individual
classifiers (i.e., SRC and CRC). For the Indian Pines image,
FRC achieves better results than OMP. However, the situation
is reversed in the PaviaU image. DWSRC performs better
classification results than KSRC, because the scheme by
using weighted-dissimilarity information is more efficient
than the one with the kernel mapping method. Thanks
to the construction of a locality constraint dictionary set
by using weighted-dissimilarity information, the proposed
DWSRC achieves better performance than NRS and WSRC.
Fig. 3(c)–(i) shows the classification maps on the PaviaU
image using %1 dictionary atoms obtained by OMP, SRC,
FRC, KSRC, NRS, WSRC, and DWSRC-SAD.
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TABLE II

CLASSIFICATION RESULTS (MEAN ± STD-DEV PERCENT) OBTAINED BY DIFFERENT METHODS
ON THE PAVIAU IMAGE VERSUS A DIFFERENT SIZE OF DICTIONARY ATOMS FOR PER CLASS

Fig. 2. Averaged OA (%) results of DWSRC with four distance-based kernels
versus a different size of dictionary atoms per class on two HSIs. (a) Indian
Pines image. (b) PaviaU image.

Second, we evaluate the impacts of various distances to
the classification results. Selecting a suitable distance metric
can enhance the discrimination power. Four distance-based
kernels, including ED-, MD-, SAD-, and χ2-distance-based
kernels, are available to quantify the differences between
the test pixel and each dictionary atoms. Fig. 2 plots
the averaged OA results of the DWSRC with multiple
distance-based kernels by a different size of dictionary atoms
per class. The range of proportions of dictionary atoms
in the total labeled samples is set to be {5%, 10%, 15%,
20%, 25%, 30%, 35%, 40%} for the Indian Pines image, and
as {0.25%, 0.5%, 1%, 2%, 3%, 4%, 5%, 6%} for the PaviaU
image. From Fig. 2, a larger size of dictionary atoms tends to
have better performance of DWSRC. The class separability of
the two HSIs is different using various distance metrics. Thus,
the optimized results are acquired by various distance metrics
on two HSIs. For the Indian Pines image, χ2 kernel achieves

Fig. 3. (a) False color image. (b) Groundtruth map. Classification maps
on the PaviaU image using %1 dictionary atoms obtained by (c) OMP
(OA = 78.14%), (d) SRC (OA = 66.79%), (e) FRC (OA = 72.26%),
(f) KSRC (OA = 83.53%), (g) NRS (OA = 83.52%), (h) WSRC
(OA = 83.67%), and (i) DWSRC-SAD (OA = 84.08%).

the highest OA in all cases. The SAD kernel method has
similar results to MD kernel, and ED kernel method performs
the worst classification performance. For the PaviaU image,
the SAD kernel method achieves the best OA results in all
cases.
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TABLE III

MCNEMAR’S TEST ON THE INDIAN PINES IMAGE

TABLE IV

MCNEMAR’S TEST ON THE PAVIAU IMAGE

Finally, we investigate the statistical differences between
DWSRC with four distance-based kernels by the standardized
McNemar’s test. If the test statistic |Z | > 1.96, the two clas-
sifiers are regarded as statistically significant at the 5% level
of significance [26]. The results under the different size of
dictionary atoms for two HSIs are listed in Tables III and IV,
respectively.

The statistical difference results indicate that DWSRC-χ2

is significantly better than DWSRC-SAD, DWSRC-MD, and
DWSRC-ED in most cases for the Indian Pines image, except
for χ2 versus SAD with 5% and 25% size of dictionary atoms.
For the PaviaU image, DWSRC-SAD statistically outperforms
DWSRC-χ2, DWSRC-MD, and DWSRC-ED. Compared with
WSRC and KSRC methods, DWSRC-χ2 is statistically sig-
nificantly better for the Indian Pines image (except for the 5%
dictionary percent), and DWSRC-SAD is statistically signifi-
cantly better for the PaviaU image.

IV. CONCLUSION

In this letter, we have developed a novel DWSRC based on
the Gaussian kernel distance for HSI, where multiple distance
metrics are adopted (i.e., χ2 distance, Manhattan distance,
SAD, and ED) to construct the locality constraint dictionary
set. Compared with the traditional SRC, the proposed DWSRC
aims to utilize the dissimilarity information based on multiple
distance kernels to quantify the significance of each dictio-
nary atoms in representing a test pixel. Experimental results
demonstrated that the proposed DWSRC achieves a better
classification performance on two standard HSIs.
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