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ABSTRACT

As an essential task for natural language understanding, slot
filling aims to identify the contiguous spans of specific slots
in an utterance. In real-world applications, the labeling costs
of utterances may be expensive, and transfer learning tech-
niques have been developed to ease this problem. However,
cross-domain slot filling could significantly suffer from nega-
tive transfer due to non-targeted or zero-shot slots. Originally,
this paper explores several ways to measure transferability
across slot filling domains and finds that the shared slot num-
ber could serve as an efficient and effective estimator. First,
this frustratingly easy measure requires no training data and
is efficient to calculate. Second, it guides us heuristically se-
lect source domains that contain more shared slots with the
target domain, which obtains SOTA results on Snips bench-
mark. Third, a dynamic transfer procedure based on this esti-
mator clearly shows the negative transfer in cross-domain slot
filling. We finally explore a source-free scene that we could
only obtain black-box source models and propose to weight
source domains based on prediction entropy.

Index Terms— slot filling, cross-domain, transferability,
shared slots, negative transfer

1. INTRODUCTION

Understanding the natural language in some real-world Al ap-
plications such as smart speakers (e.g., Amazon Alexa) is nec-
essary. Slot filling [1, 2, 3, 4] aims to detect critical spans of
words in user utterances and identify which entity it belongs
to, i.e., the slot type. There are two main kinds of strategies
to accomplish slot filling. The first one views slot filling as a
single sequential labeling task that assigns each token a “slot-
combined BIO” tag (e.g., “B-playlist”, “I-playlist”) [1, 2, 5,
6]. The second one decomposes slot filling into a coarse-to-
fine process. First, it detects possible slot spans via sequence
labeling with tags being “B”, “I”, or “O”. Then, it predicts the
specific slot types for detected spans via classification [4, 7].
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Fig. 1. Illustration of Coarse SF and Coach SF. Coach SF de-
composes slot filling into two stages. To deal with zero-shot
slot types, the hidden outputs of each token/entity are classi-
fied based on inner products with a slot type description ma-
trix rather than the commonly used linear classification layer.

We denote these two strategies as “Coarse SF” and “Coach
SF”, respectively. The illustrations are shown in Fig. 1.

Supervised slot filling needs amounts of training data
which is expensive to collect and label. Cross-domain slot
filling (CDSF) [4, 7, 8, 9] has been investigated to ease the
data scarcity problem. However, the data heterogeneity leads
to a challenge that domains have extremely various slot types.
As shown at the top of Fig. 2, there are 7 domains and 39 slot
types in Snips [10] benchmark. Each row shows the distribu-
tion of the slots in the corresponding domain, and the circle
size shows the occurrence frequency of this slot. Clearly,
the domain gaps are significant. For example, if we want
to transfer the knowledge from domain “AddToPlaylist” to
“PlayMusic” (abbreviated as “ATP” and “PM”), there are
only 3 shared slot types. Worsely, some domains could even
have no common slot types (e.g., “ATP” and “GW”). Intu-
itively, the non-targeted slot types in the source domain may
lead to negative transfer because they do not occur in the tar-
get domain, and the zero-shot slot types in the target domain
may still be hard to identify because they are unseen in source
domains. In this paper, we first explore whether this intuitive
assumption holds via comparing several domain transfer-
ability measures. We find simply calculating the shared slot
numbers could be an ideal estimator. Then, we explore sev-
eral advantages of this frustratingly easy estimator.
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2. RELATED WORKS

Existing CDSF works focus on handling zero-shot slot
types [3, 4, 7]. Resorting to external slot descriptions to obtain
a semantic concept tagger [3] or introducing explicit align-
ment of slots and example values [11] are both effective so-
lutions. Coach [4] decomposes CDSF into two stages, where
the first stage is more transferable because it only searches
possible entity spans and does not need to identify the slot
types. CZSL-Adv [7] incrementally introduces contrastive
learning and adversarial attacks to improve performances.
Different transferability measures have been explored in su-
pervised classification [12], multi-task learning [13], and
pre-trained language models [14]. Measuring transferability
is meaningful and useful to reuse models effectively even
faced with domain gaps [15, 16]. Existing CDSF works
do not explore the negative transfer phenomenon brought by
non-targeted slot types, let alone selecting appropriate source
domains. The most similar work to ours is the slot transfer-
ability measure [17], which evaluates the transferability from
a source slot to a target slot in CDSL. Although it has been
verified useful to help select source slots that are more trans-
ferable to a target slot, the slots are not independent because
they may often co-occur in utterances. Hence, we explore the
transferability at the domain level, which could help us select
appropriate source domains.

3. DOMAIN TRANSFERABILITY MEASURES

Snips Benchmark Snips [10]' contains 7 domains and 39
slot types. Each domain contains approximately 2000 train-
ing utterances. Each utterance has 2.6 slots on average. The
slot distribution across 7 domains is shown in Fig. 2. For
CDSF, existing works use all data from 6 source domains for
training, and the left one as target domain. They explore nei-
ther the negative transfer phenomenon nor domain selection.
Additionally, they do not explore pairwise domain transfer
procedures. In this section, we explore this on Snips and in-
troduce some measures for Domain Transferability (DT).

Experimental Details We follow the experiments in [4, 7].
We use both word-level [18] and character-level [19] embed-
dings to obtain 400d vectors for tokens and slot descriptions.
We use a two-layer BILSTM with 200 hidden neurons. In
Coarse SF, we classify each token’s hidden outputs via calcu-
lating the inner products with the slot description matrix. We
try adding a CRF layer, while we obtain worse performances.
However, in Coach SF, we find the CRF layer useful and add
it behind the BiLSTM to obtain the BIO tags. Then, the de-
tected spans will be aggregated via another BiLSTM for slot
type classification. The network architectures can be found
in Fig. 1. We use the first 500 utterances in target domain
for validation. We utilize seqeval® to calculate slot F1 as the

Thttps://github.com/zliucr/coach
Zhttps://github.com/chakki-works/seqeval

performance criterion. More details could be found in [4].

Oracle DT via Cross-Domain Performance (DT-CDP) We
first explore the pairwise transfer performances. Specifically,
we denote Trf(S — T') = Fl, y~7,, (y, z;0s) as the perfor-
mance of transferring model trained on domain “S” to “T”.
g is the source model. 7, is the target data distribution.
x and y are sequences of tokens and tags. This is the most
concerned transferability measure in transfer learning [12],
which is often used as oracle values to evaluate other approx-
imate measures. The pairwise F1 scores of Coarse SF and
Coach SF are listed in Fig. 2 (a) and (b), respectively. The
diagonal shows the in-domain Fls as references, where we
use the 500 validation utterances in target domain for training
and the others for evaluation. Rows are sources and columns
are targets. We note that most of the transferability values
are small, which verifies that large gaps really exist among
domains. Additionally, the results of Coarse and Coach SF
differ a little, while the calculated results enjoy a large Spear-
man correlation (i.e., 0.811).

DT via Extending STM (DT-STM) Slot Transferabil-
ity Measure (STM) [17] estimates transferability among
slots. First, it collects utterances to extract slot value rep-
resentations (2,, (i.e., the embeddings of tokens belong
to specific slot types) and slot context representations 2.,
(i.e., the embeddings of tokens around specific slot types).
* € {s,t} denotes pairwise slots. Then, it calculates the
value and context MMD [20] as d, = MMD(Qys, Qyt)
and d. = MMD(Qs, Q). The transferability between

slots is defined as STM(s,t) = 1.0 — tanh (%),

where 3 weights the value and context similarities. This
measure only considers slot transferability, and we extend
it to calculate domain transferability. Given source and tar-
get slots, denoted as {s;}/"; and {t;}7_,, we formulate the
domain transferability as an optimal transport problem, i.e.,
Tl'f(S, T) = maxc>o Zi,j CzJSTM(’L,']), s.t. Z;’l:l Oij =
L S, Cij = =, where C € R™*" is the transport matrix.
For fast evaluation, we use the relaxed approximation in [21].
The evaluated results are shown in Fig. 2 (c).

DT via Slot Distribution Discrepancy (DT-SDD) As shown
in Fig. 1, the slot distributions among domains are extremely
distinct. Previous works [12] declare that conditional en-
tropy of label distributions is directly related to the loss of
the transferred model. Hence, we try to measure the trans-
ferability via the slot distribution discrepancy. Specifically,
we obtain the source and target slot distributions Pg, Pp
via normalizing the occurrence frequencies of all slots, i.e.,
P, = Z#;fs]- ,x € {S,T}. Then we use the slot distribu-
tion discrei)ancy to calculate the transferability measure, i.e.,
Trf(S,T) = 2.0 — |Ps — Pr|;. The measured results are
shown in Fig. 2 (d).

DT via Shared Slot Number (DT-SSN) We further explore
a frustratingly easy way of calculating transferability with
only the access of source and target slot types. We denote
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Fig. 2. Top: the slot type distributions across Snips [10] domains. The rows and columns are abbreviations of domains and slot

types. Bottom: several Domain Transferability (DT) measures.

Cs = {si}i~y and O = {t;}}_; as the slot type sets of two
domains. We count the shared slot numbers across domains,
ie., Trf(S,T) = |Cs N Cr|, as the simple estimator. The
counts on Snips could be found in Fig. 2 (e). First, this mea-
sure is very efficient to estimate with the only need to know
the source and target slot types, while the aforementioned
ways need to access the slot distributions (DT-SDD) or user
utterances (DT-STM). Second, we calculate the correlations
with the oracle transferability. We calculate the rank-based
correlations, i.e., Spearman correlation, of the estimated re-
sults in (c-e) with (a-b), respectively. Specifically, we cal-
culate Spearman correlation for each target domain respec-
tively (corresponding columns in Fig. 2 (a-e)) and average
them as the overall correlation, which is shown in the “[]”
(two numbers in (c-e) show the correlations with (a/b)). We
excitingly observe that DT-SSN could better reflect the oracle
ones. Hence, DT-SSN is an efficient and effective transfer-
ability measure in CDSF. We also extend this to consider an
asymmetric estimator via dividing the total number of source

slot types, i.e., Trf(S — T') = %

to a lower Spearman correlation compared with DT-SSN.

. However, this leads

4. ADVANTAGES OF DT-SSN

The SOTA results via Selecting Source Domains Given a
target domain, existing CDSF methods [4, 7] take the other
6 domains as sources without filtering irrelated domains.
As aforementioned, the non-targeted slots in some domains
could lead to negative transfer. Hence, we propose a simple
heuristical domain selection way via the guidance of DT-SSN.
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The values in “[]” denote the average Spearman correlations.

Specifically, we sort all other six domains by descending via
their shared slot numbers with the target domain. Then, we
simply select top-k domains as sources and use their data
to train a single global model. We use the Coach SF and
follow the settings in Coach [4]. We compare our methods
with the reported results in [3, 11, 4, 7, 17]. We select top-1
and top-3 models respectively. The comparisons are listed
in Tab. 1. Coach-TR [4] and CZSL-Adyv [7] introduces addi-
tional techniques to enhance model performances. However,
our methods does not introduce any complex training tech-
niques and could still obtain SOTA results. An interesting
observation is that utilizing only a single source domain for
ATP could lead to an F1 score as high as 0.572, while utiliz-
ing 3 source domains decreases to 0.548, and Coach only gets
0.452 using all source domains. This implies that introducing
more source domains leads to negative transfer.

Showing the Negative Transfer More Clearly As afore-
mentioned, we still sort the source domains according to the
DT-SSN by descending. Then we dynamically add these
source domains’ data for training the source model. Take the
target domain “ATP” as an example, we first train a model
only using the PM domain, then we use both the PM and
BR domain for training, and last, we train on all six do-
mains. The dynamic transfer results are shown in Fig. 3,
where the solid blue bars denote source domains that have
at least one common slot type with target domain, while the
dashed orange ones have totally different slot types (called
non-overlapped domains). We can clearly observe that the
F1 scores continually decrease on most domains when non-
overlapped domains are continually added. This verifies
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Table 1. Slot F1 score comparisons. The last three columns show our proposed methods. The columns Coach-1 and Coach-3 denote training
with Coach SF via selecting top-1, 3 source domains according to DT-SSN. The final column shows the results with black-box (BB) models.

CT [3] | RZT [11] | Coach [4] | Coach-TR [4] | CZSL-A [7] | STM [17] || Coach-1 | Coach-3 | Coarse-BB
ATP | 38.82 42.77 45.23 50.90 53.89 50.54 57.22 54.81 53.32
BR 27.54 30.68 33.45 34.01 34.06 32.89 39.40 38.92 38.30
GW | 46.45 50.28 47.93 50.47 52.24 62.38 53.55 51.97 57.66
PM 32.86 33.12 28.89 32.01 34.59 34.45 36.95 39.27 36.72
RB 14.54 16.43 25.67 22.06 31.53 25.39 16.63 18.26 15.43
SCW | 39.79 44.45 4391 46.65 50.61 52.21 35.86 53.88 39.27
FSE 13.83 12.25 25.64 25.63 30.05 26.05 29.07 31.31 22.44
Avg 30.55 32.85 35.82 37.39 \ 40.99 40.56 H 38.38 41.20 37.59

again the assumption that non-targeted slot types could lead
to negative transfer in CDSF. Exceptionally, adding more
non-overlapped source domains sometimes leads to better F1
scores, e.g., adding “BR” (Book Restaurant) when the target
domain is “RB” (Rate Book). The two domains may be more
similar in the feature space. Because this type of similarity is
hard to evaluate and we leave it as future work. The bottom
right of Fig. 3 plots the average results of these 7 target do-
mains, which shows that selecting 5 or 6 source domains lead
to obvious performance degradation.

57.2 ATP 39.4 1 BR
54.2 37.51

51.24 35.7 1
PM  +BR +GW +RB +SCW +SSE GW +SSE +PM +ATP +RB +SCW
53.9 GW 39.3 1 PM

51.11 36.5 1

33.71
BR +SSE +ATP +PM {RB +SCW ATP +BR +GW {RB +SCW +SSE
25.0 1 RB 53.9 1 SCW

48.4

20.8 44.9 1

16.6 1 | 35.9 1
SCW +SSE +ATP +BR +GW +PM RB  +SSE +ATP +BR +GW +PM
31.31 SSE 41.31 Avg

27.71 39.6 1

24.2 4

| 3794 |
BR +GW +RB +SCW +ATP +PM Topl Top2 Top3 Top4 Top5 Topb

Fig. 3. The dynamic transfer results based on Coach. Each
shows a target domain. The last shows the average results.

Source-Free Scenes with only Black-Box Models The
hyper-parameter k in domain selection is hard to determine if
without any prior knowledge. Furthermore, we may not ob-
tain source models’ information and could only obtain black-
box models due to data privacy. Because the source models
are black-box, we could only obtain the prediction results,
e.g., the slot probability distribution of every token. Assume
we have K source models, where each model could feedback
a probability matrix Q) € ROxDxn where b, I, n denote

the number of target utterances, tokens in each utterance, and

target slot types, respectively. Then we calculate the average

= b1
entropy via Ey = 57 >,71 25—y —Qk.ij 10g Q. ij. Next,

we calculate Softmax(—{Ej}~_,) as the weights of each
source domain. This is reasonable and related to DT-SSN
because if one model tends to output uniform predictions for
all target samples, it is less possible for the source domain to
own some shared slot types with the target domain. Finally,
we utilize the estimated weights to ensemble the prediction
probabilities. In our experiments, we train the black-box
models via Coarse SF for each domain. For a target domain,
we use this entropy-based mechanism to ensemble 6 source
black-box models. The results are listed in the last column
of Tab. 1. The proposed ensemble strategy could still lead to
notable performances (comparable with Coach-TR [4]) even
only using black-box source models.

More Sot Filling Datasets We also analyze other CDSF
benchmarks such as MultiwOZ [22] (8 domains and 61 slot
types) and SGD [23] (20 domains and 240 slot types). The
matrix of shared slot numbers is also very sparse, which is
similar to Fig. 2 (e), e.g., the domain “Taxi” and ‘“Restaurant”
in MultiWOZ do not share any slot types. We expect our
proposed methods could also work on these benchmarks. We
leave this as future work due to content limitations.

5. CONCLUSION

We explore several domain transferability measures in CDSF.
Although slot sparsity leads to non-targeted and zero-shot slot
types that exacerbate the difficulty of cross-domain transfer,
it inspires a frustratingly easy domain transferability measure,
i.e., DT-SSN. An exciting finding is that this simple estimator
could reflect the transferring performances well. We then pro-
pose to use this estimator to select domains and obtain SOTA
results on Snips. With DT-SSN, we further clearly show the
negative transfer phenomenon in CDSF. We also investigate
a more challenging source-free scene that could only access
black-box source models, and the ensemble strategy inspired
by DT-SSN gives notable results.
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