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Kernel Fused Representation-Based Classifier
for Hyperspectral Imagery

Le Gan, Peijun Du, Senior Member, IEEE, Junshi Xia, Member, IEEE, and Yaping Meng

Abstract— In this letter, we propose a kernel fused
representation-based classifier (KFRC) for hyperspectral
images (HSIs), which combines sparse representation (SR)
and collaborative representation (CR) into a unified kernel
representation-based classification framework. First, we present
two individual kernel methods, i.e., kernel SR (KSR) and kernel
CR (KCR), which kernelize the representation methods by
projecting the samples into a high-dimensional kernel space
to improve the samples separability between different classes.
Once obtaining the two kernel representation coefficients,
KFRC attempts to achieve a balance between KSR and KCR
via an adjusting parameter θ in the kernel residual domain.
Subsequently, the class label of each test sample is determined by
the minimum residual for each class. Experimental results on two
HSIs demonstrate the proposed kernel fused method performs
better than the other state-of-the-art representation-based
classifiers.

Index Terms— Classifier fusion, collaborative representation
(CR), hyperspectral image (HSI) classification, kernel trick,
sparse representation (SR).

I. INTRODUCTION

CLASSIFICATION is a consistent topic for hyperspec-
tral image (HSI) analysis [1]–[5]. Numerous classifiers,

such as support vector machines [6] and multinomial logistic
regression [7], have been introduced to obtain a satisfac-
tory accuracy for HSI classification over the past years.
Recently, without considering any prior sample distribution,
representation-based classifiers [8] have drawn much atten-
tion in pattern classification. As a nonparametric learning
algorithm, representation-based methods can directly assign
a class label to a test sample based on a structured
dictionary [9], [10]. The primary thought of such types of
classifiers is that the training dictionary can linearly approxi-
mate a test sample. The weight coefficients of those classifiers
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convey critical information that reflects the importance of
different dictionary atoms. Based on the type of constraints,
representation-based methods can be classified into two broad
categories: sparse representation (SR), which can be solved
by an �1-minimization problem, and collaborative representa-
tion (CR), corresponding to an �2-minimization problem.

SR-based classifier (SRC), originally proposed in [11] for
face recognition, has been broadly applied to various kinds
of HSI applications. SRC is chiefly based on the assumption
that a given sample can be compactly represented by a few
dictionary atoms that carry the essential information [12].
Considering the expensive computational cost of �1-norm reg-
ularization methods for high-dimensional classification tasks,
Zhang et al. [13], [14] argued that it is not necessary to
regularize the sparse coefficient with �1-norm and proposed
a CR-based classifier (CRC), which is similar to SR-based
method. CRC uses a linear combination of training dictionary
from all the classes to reconstruct a given sample, rather than
only a few atoms. In [13], the CRC is solved by an �2-norm
regularized linear regression problem and a very competitive
accuracy with a significantly lower complexity was achieved.
Inspired by the high computational efficiency and desirable
performance, the CRCs have been successfully applied to HSI
classification [15], [16].

Although the individual representation-based methods have
exhibited good performance for hyperspectral classification,
one single kind of method can only depict the discrimination
of HSI from one aspect. In the SR-based method, all atoms
competitively participate in the presentation process of a
given sample, whereas all atoms have an equal chance to
represent a given sample in the CR-based method. Actually,
information fusion technique has been broadly discussed to
combine multiple pieces of information for improved perfor-
mance. Zhang et al. [17] concatenated multiple features and
proposed a multifeature SRC in the feature-level. Li et al. [8]
combined SR- and CR-based methods via a proper weight
in the residual domain and proposed a fusion-based classifier.
Likewise, an elastic net representation-based classifier (ENRC)
was discussed in [8] to overcome the indigenous disadvantages
of SR- and CR-based methods.

As we all know, kernel methods, which project samples
into a high-dimensional feature space by a nonlinear mapping,
yield a significant performance improvement, because the
kernel-based methods implicitly exploit the complex struc-
ture of the given sample that may not be captured by
the linear model [18]. Gao et al. [19] proposed a kernel
SRC (KSRC) to capture the nonlinear similarity of features
by a kernel trick. In this letter, we propose a kernel fused
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representation-based classifier (KFRC) for HSI based on two
individual representation methods by assuming that a test
sample can be linearly approximated by the given dictionary
atoms in the kernel feature space. For KFRC, samples are
mapped into a high-dimensional feature space first and then
two different recovered coefficients of the test sample are
obtained by solving �1- and �2-minimization problems based
on a structured dictionary consisting of different atoms from
all of the classes in this new feature space. In order to make the
representation more suitable, a new fused residual is applied
by combining two single residuals between the test sample
and the corresponding recovery for each class with the two
different representation methods. Subsequently, the class label
for the test sample is determined by minimum kernel fused
residual for each class. The validity of the proposed KFRC is
verified by experiments on two classical HSIs.

The remainder of this letter is organized as follows. The
proposed kernel fused-based classifier is described in
Section II. The effectiveness of the kernel fused classifier is
demonstrated on two HSIs in Section III. Finally, Section IV
summarizes this letter and makes some concluding remarks.

II. KERNEL FUSED REPRESENTATION CLASSIFIER

A. Representation-Based Classifiers

First, we review two classical representation-based clas-
sifiers (i.e., SRC and CRC). Given a training dictionary
D = [d1, d2, . . . , dN ] ∈ R

B×N (B is the number of bands)
consisting of N atoms and class labels zi ∈ {1, 2, . . . , C},
where C denotes the number of classes. SRCs [11] assume
the signals belonging to the same class span the same low-
dimensional subspace. A given signal y ∈ R

B is approximately
reconstructed by a weighted linear combination of a small
number of support atoms over the training dictionary, which
formulated as the following �1-minimization problem:

α̂
S RC = arg min

αSRC
‖y − DαS RC‖2 + λ1‖αS RC‖1 (1)

where λ1 > 0 is a sparsity regularization parameter. Once
obtaining the sparse coefficient αS RC , the label y is determined
by the minimal residual between y and its approximation from
each subdictionary

class(y) = arg min
i=1,...,C

‖y − Dδi (α
S RC)‖2 (2)

where δ is the characteristic function [11] that chooses coef-
ficients related with the i -class and makes the rest to zero.

Similar to the SRC, in CRC [13], all the atoms are adopted
to reconstruct the test signal y, which can be formulated by
the following �2-minimization problem:

α̂
C RC = arg min

αC RC
‖y − DαC RC‖2 + λ2‖αC RC‖2 (3)

where λ2 is a positive parameter to balance the representation
error and regularization term, and the corresponding closed-
form solution of (3) is given by

α̂
C RC = (DTD + λ2I)−1DTy. (4)

Once obtaining the CR coefficient αC RC , the residual rC RC
i =

‖y −Dδi (α
C RC)‖2 is computed similar to SRC for class label

assignment.

B. Kernel Tricks

As we all know, through suitable kernel functions that reflect
the similarity among samples, a linearly inseparable sample
in original space can become linearly separable in a high-
dimensional kernel space [20], [21]. Let � define a nonlinear
map corresponding to a kernel function k(·, ·) : R

B×R
B �→ R.

Here, we adopt the Gaussian radial basis function (RBF) kernel
k(x, y) = exp(−γ ‖x − y‖2

2) (γ > 0 is the parameter of the
RBF kernel), and the SR-based problem of (1) in the kernel
feature space can be rewritten as

α̂
K S RC = arg min

αK S RC
‖�(y) − �(D)αK S RC‖2 + λ1‖αK S RC‖1

(5)

where �(y) = [k(d1, y), k(d2, y), . . . , k(dN , y)]T ∈ R
N×1,

and �(D) ∈ R
N×N is the training kernel matrix with

�(D)i, j = k(di , d j ). Similarly, the class label of y is given as

class(y) = arg min
i=1,...,C

‖�(y) − �(D)δi (α
K S RC)‖2. (6)

Likewise, kernel CR-based representation can be formulated
as

α̂
K C RC = arg min

αK C RC
‖�(y) − �(D)αK C RC‖2 + λ2‖αK C RC‖2

(7)

and the corresponding closed-form solution is given as

α̂
K C RC = (�(D) + λ2I)−1�(y). (8)

After obtaining αK C RC , the class label of a given sample y is
determined according to the minimum residual γ K C RC

i (y) =
‖�(y) − �(D)δi (α

K C RC)‖2.

Algorithm 1 KFRC Method

1: Input: Available training dictionary {di , zi }N
i=1 for C class,

di ∈ R
B denotes the dictionary atom with class label zi ∈

{1, 2, . . . , C}, test samples Y = {y1, . . . , yM } ∈ R
B×M ,

regularization parameters λ1, λ2 and balancing parameter
θ .

2: Output: An 2-D map which records the labels of the test
samples Y

3: Select a mercer kernel function k(·, ·) and its parame-
ters and compute the kernel gram matrix �(D), where
�(D)i j = k(di , d j ).

4: for i = 1, . . . , M do
5: 1) Calculate k(·, yi ) = [k(d1, yi ), . . . , k(dN , yi )]
6: 2) Solve the �1-minimization problem (5) to get the

kernel sparse coefficient vector αK S RC .
7: 3) Solve the �2-minimization problem (7) according to

(8) to obtain kernel collaborative weight vector αK C RC .
8: 4) Calculate two individual residuals r K S RC

j (yi ) and
r K C RC

j (yi ), and the fused residual r K F RC
j (yi ) is obtained

using (9).
9: 5) Decide the final label according to class(yi ) =

arg min j=1,...,C r K F RC
j (yi ).

10: end for
11: return The estimated label class(yi).
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Fig. 1. OA(%) results versus different balancing parameters θ for the
proposed FRCs.

C. Proposed KFRC

Li et al. [8] have confirmed that the classification perfor-
mance was improved by SRC, while CRC brought the gain
in other cases. All the dictionary atoms collaborate on the
approximation of a given signal in the CR-based model with
an equal chance, whereas only a few dictionary atoms have
the opportunity to participate in the signal reconstruction in
the SR-based model. However, if the HSI is not linearly
separable, the performance of FRC may decrease. As a kernel
extension of FRC [8], KFRC adopts the kernel trick to map
spectral feature into a high dimensional kernel space, then
two individual representation coefficients in the new feature
space are obtained by solving the corresponding �1- (5) and
�2-minimization problems (7), respectively. After obtaining the
two coefficients αK S RC and αK C RC , the individual residuals
rKSRC

i and rKCRC
i are computed similar to SRC. For a more

suitable representation in the kernel space, the fused residual
γ KFRC

i (y) can be formulated as

γ K F RC
i (y) = (1 − θ)γ K S RC

i (y) + θγ K C RC
i (y) (9)

where θ (0≤ θ ≤ 1) is a control parameter that makes a
tradeoff between kernel SR- and kernel CR-based methods.
Then the class label of y is determined according to the
class with the smallest residual. Obviously, if θ = 0, the
fused method reduces to KSRC, and if θ = 1, the fused
method reduces to KCRC . The pseudocode description of
the proposed KFRC is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We examine the proposed KFRC algorithm on two classical
hyperspectral data sets, e.g., Indian Pines and the University
of Pavia images. For the Indian Pines image, the scene covers
a mixed agricultural/forest area, and the size is 145 × 145 ×
200 with a spatial resolution of 20 m. It contains 16 different
classes, 10% of the labeled samples is randomly chosen as
the training samples, and the rest 90% for test samples [the
training and test samples are visually given in Fig. 3(a) and (b),
respectively]. For the University of Pavia image, the scene
covering an urban area was obtained by the ROSIS-03 sensor,
and the size is 610 × 340 × 103 with a spatial resolution of
1.3 m. It contains nine class, 1% samples for each class is
selected as training samples, and the remaining 99% for test
samples. It should be noted that RBF kernel is adopted in all

Fig. 2. OA(%) results versus different kernel parameters ρ for all kernel
representation-based classifiers.

Fig. 3. Classification maps obtained by several different representation-
based classifiers for the AVIRIS Indian Pines image. (a) Training samples.
(b) Testing samples. (c) FRC. (d) ENRC. (e) KENRC. (f) KFRC.

kernel-based classifiers. FRC combines the SR- and CR-based
representations in the residual domain via a balance parameter
in spectral space. ENRC solves the �1-�2 minimization prob-
lem by elastic net model in spectral space. KENRC further
explores elastic net model in the high dimensional feature
space.

To obtain the optimal classification performance of various
representation-based classifiers, we learn a set of the opti-
mal parameters by cross-validation. In all the methods, the
λ1 regularization parameters for SR- (SRC and KSRC) and
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TABLE I

OPTIMAL COMBINATION OF PARAMETERS FOR VARIOUS REPRESENTATION-BASED CLASSIFIERS (L = 200)

TABLE II

CLASSIFICATION ACCURACY OBTAINED BY DIFFERENT CLASSIFIERS FOR THE AVIRIS INDIAN PINES IMAGE WITH 10% TRAINING SAMPLES

fused-based (FRC, ENRC, KFRC, and KENRC) methods
range from 1e − 7 to 1e − 1. Analogically, the λ2 parameters
for CR- (CRC, KCRC) and fused-based methods range from
1e − 8 to 1e − 2.

First, we evaluate the OA results of the presented fused-
based classifiers with different balancing parameters θ . For
fairness, λ1 and λ2 were fixed at the optimal values. Fig. 1
shows the influence of the balancing parameter. For the Indian
Pines image, compared to FRC, KFRC achieves a relative
stable OA result as θ vary along with the candidate set.
When θ reach a small value, the "competitive" nature of
SR term dominate in the fused method, as θ get larger, the
“collaborative” nature makes a large role. It can be clearly
observed that when θ = 0.6, both the fused representation-
based methods achieve the best OA results in the candidate set,
which indicates the fused method achieve an optimal balance
between the SR term and the CR term in the residual domain.
For the University of Pavia Image, the optimal balancing
parameter θ are 0.3 and 0.4 for FRC and KFRC, respectively.

Second, we examine how the kernel parameter ρ (where
γ = eρ/L, L = 200) affects all the kernel representation-
based methods. For the kernel-based methods, parameter ρ
is varied in the range {2, 3, 4, 5, 6, 7, 8}, corresponding to γ
in the range {e2/L, . . . , e8/L}. Fig. 2 gives the sensitivity
analysis of the kernel parameter. For the Indian Pines image,
as we can clearly observed, the optimal γ parameters are e6/L,
e4/L, e5/L, and e6/L for KSRC, KCRC, KFRC, and KENRC,
respectively. Compared with the relatively stable performance
to γ for KCRC in the domain, KSRC has much different clas-
sification results with various values of γ . Likewise, KFRC has

an obvious OA fluctuation with different kernel parameters,
and KENRC exhibits an irregular pattern in this domain. For
the University of Pavia Image, the optimal γ parameters are
e3/L, e2/L, e4/L, and e6/L for KSRC, KCRC, KFRC, and
KENRC, respectively. Compared with Indian image, all the
kernel classifiers have a relatively stable performance to γ for
Pavia image in the domain. The learned optimal parameters
of all the presented representation-based classifiers are listed
in Table I.

Third, we evaluate the classification results achieved by the
proposed kernel fused-based classifier with that obtained by
the state-of-the-art methods. Following the parameter settings
in Table I, we conduct each experiment 10 times, and the
average classification results are presented in Tables II and III
for the Indian Pines and the University of Pavia images,
respectively. The corresponding classification maps for the
Indian Pines image using FRC, ENRC, and the kernel
methods, i.e., KENRC and KFRC are visually displayed in
Fig. 3(c)–(f). For the Indian Pines image, the representation-
based classifiers exceed the nearest neighbor method (KNN),
the SR- (SRC and KSRC), CR- (CRC and KCRC), and
the kernel-based classifiers (KSRC, KCRC, KFRC, and
KENRC) outperform the nonkernel methods (SRC, CRC,
FRC, and ENRC) about 10%. The fused classifiers (FRC and
KFRC) usually have much better performance than individual
representation-based classifiers. Moreover, the fused classifiers
are superior to the classifiers solved by elastic net model, i.e.,
ENRC and KENRC. For the University of Pavia Image, CRC
has a similar OA results with KNN, SRC has a better OA
results than CRC, and the fused methods (FRC and ENRC)
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TABLE III

CLASSIFICATION ACCURACY OBTAINED BY DIFFERENT CLASSIFIERS FOR THE UNIVERSITY OF PAVIA IMAGE WITH 1% TRAINING SAMPLES

have a slightly better OA results than SRC. Extending to
kernel space, KCRC has a similar performance with KSRC,
and the kernel fused methods (KFRC and KENRC) have
better classification results than nonfused kernel methods
(KSRC and KCRC).

IV. CONCLUSION

This letter has elaborated several pixel-wise representation-
based classifiers and proposed a KFRC, which combines
SR- and CR-based representations in the kernel residual
domain for HSI classification. Based on a fixed dictionary,
the proposed KFRC attempts to attain a balance between the
SR- and CR-based methods in the decision-level via a suitable
balancing parameter θ . Taking full of the “competitive” pecu-
liarity of SRC and the “collaborative” characteristic of CRC,
the fused classifier has shown stronger discriminative ability
than the single methods. Compared to the FRC, the proposed
KFRC method further strengthens the discrimination ability
in the high dimensional feature space, making the decision
boundary more separable, and achieves a high classification
performance.
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