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Abstract— Multiple types of features, e.g., spectral, filter-
ing, texture, and shape features, are helpful for hyperspectral
image (HSI) classification tasks. Combining multiple features can
describe the characteristics of pixels from different perspectives,
and always results in better classification performance. Recently,
multifeature combination learning has been widely employed
to the multitask-learning-based representation-based model to
obtain a multifeature representation vector. However, the lin-
ear sparse representation-based classifier (SRC) cannot handle
the HSI with highly nonlinear distribution, and kernel sparse
representation-based classifier (KSRC) can remedy the drawback
of linear SRC. By adopting nonlinear mapping, the samples in
kernel space are often of high or even infinite dimensionality.
In this paper, we integrate kernel principal component analysis
into multifeature-based KSRC and propose a novel multiple
feature kernel sparse representation-based classifier (namely,
MFKSRC) for hyperspectral imagery. More specifically, spatial
features, Gabor textures, local binary patterns, and difference
morphological profiles are adopted and then each kind of
feature is transformed nonlinearly into a new low-dimensional
kernel space. The proposed framework can handle data with
nonlinear distribution and add a dimensionality reduction stage
in kernel space before optimizing the corresponding cost function.
Experimental results on different HSIs demonstrate that the
proposed MFKSRC algorithm outperforms the state-of-the-art
classifiers.

Index Terms— Hyperspectral image (HSI) classification, kernel
principal component analysis (KPCA), multiple feature learning,
multitask learning, sparse representation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), gathered by hyper-
spectral sensors in hundreds of contiguous spectral
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bands, composed of high-dimensional image cube, includ-
ing discriminative spectral signatures, and have provided
numerous applications in materials classification [1]–[4],
target identification, and anomaly detection. Among the
numerous applications, classification of HSIs is one of the
most important tasks from the machine-learning perspective.
Numerous widely used classifiers including support vec-
tor machines (SVMs) [5], [6], multinomial logistic regres-
sion [7], [8], neural network [9], random forest [10], [11], and
rotation forest [12], [13] have been developed over the past few
years. The key idea of classification is to accurately categorize
each pixel into certain classes based on meaningful and
discrimination information learned from the original image.

To improve the classification performance, we often adapt
different types of feature for spectral–spatial classification.
Many attempts have been made to explore various types
of feature descriptors (e.g., spectral, filtering, texture, and
shape features) to depict a pixel of HSI [14]–[20]. In [14],
extended morphological profiles (EMPs) have been extracted
for constructing spectral–spatial features from HSI. In [15],
2-D Gabor filtering feature extracted from selected bands
was investigated for HSI classification. In [16], local binary
pattern (LBP) and local phase quantization feature were inves-
tigated for texture characterization of land cover classification
of optical remote sensing image data. In [18], two fusion
strategies are applied to the LBP-based histogram feature
for HSI classification. Although those single-feature-based
classifiers have good performance, one kind of feature can
only describe the pixels from one perspective, and none of
the common feature descriptors have the same discriminative
power for all classes [21]. Combining multiple types of
features is a recent trend for HSI classification. It is apparent
that among many kinds of feature descriptors, each feature
has various discriminative power for the given classes. It is
natural to combine different types of descriptions to depict a
pixel. Li et al. [22] proposed a new framework for multiple
feature learning by integrating different types of (linear and
nonlinear) features. Zhong and Wang [23] proposed a multiple
conditional random field ensemble model, including gray level
co-occurrence matrix, Gabor texture features, and gradient ori-
entation feature. Zhang et al. [24] introduced a patch alignment
framework to linearly combine multiple features (e.g., spectral,
texture, and shape) and obtain a unified low-dimensional rep-
resentation of these features for subsequent HSI classification.

Recently, the sparse representation-based classifier
(SRC) [25], [26] has been widely used in various HSI
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applications [27]–[35]. In SRC, a given test sample is
represented as a sparse linear combination of all training
samples (namely, dictionary atoms), and the recovered
nonzero sparse coefficients are supposed to concentrate on
the dictionary atoms with the sample class label as the test
sample. To exploit the spectral and contextual information of
HSI, Chen et al. [28] proposed a joint sparse representation
classifier based on the joint sparsity model (JSM) with
neighboring pixel information. Zhang et al. [32] extended
the JSM by assigning different weights for the neighboring
pixels around the central pixel via a nonlocal spatial prior.
Fang et al. [36] proposed a multiscale adaptive sparse
representation (MASR) method by integrating multiscale
spatial information with the JSM model via an adaptive
sparse strategy. Li et al. [29] introduced the collaborative
representation strategy by adopting �2-norm regularization
instead of �1-norm for HSI classification. Aiming at improving
the performance of the SR-based classifier, we apply
multiple types of features to depict a pixel from different
perspectives to enhance the discriminative ability. Motivated
by multitask learning theory [37], [38], single-feature-based
SR models (each type of feature is one task) can be extended
to multiple feature learning for HSI classification tasks
in [39]–[41]. These multifeature-based classifiers commonly
improve the robustness of HSI classification.

It is well known that many types of feature descriptors
of an HSI often tend to be linearly inseparable. Despite
their robust performance, the linear nature of representation-
based classifier (SRC and CRC) is almost always inade-
quate for representing samples distributed linearly in one
direction (with nonlinear distribution). Based on the standard
SR model, some kernel SR-based classifiers [kernel sparse
representation-based classifier (KSRC)] have been devel-
oped as robust classifiers that are more adaptable to cope
with samples with the distribution in [42]–[45]. In kernel
SR-based methods, original samples in input space are mapped
into high-dimensional feature space to capture the nonlinear
structure of these samples via kernel tricks. Thus, the same
distribution in samples are easily grouped together and are
linearly separable. Samples in kernel space are often of
high or even infinite dimensionality, and �1-minimization in
this space is impractical. One of the commonly used strategies
is adding a kernel-based dimensionality reduction (DR) step
in the kernel space before implementing SR-based classifiers.
Toward that end, kernel principal component analysis (namely,
KPCA, as a nonlinear version of PCA) [46] is capable of
capturing the higher order statistics by mapping nonlinearly
the input space to a feature space where DR is implemented
simultaneously.

Motivated by the above concerns, in this paper, we combine
KPCA and linear SRC into a novel KSRC based on multiple
types of feature descriptors of HSI. The new KSRC with
multiple types of feature descriptors is integrated into a mul-
titask learning framework, and we propose a multiple feature
kernel sparse representation-based classifiers (MFKSRCs) for
HSI classification. To obtain a sparse solution, the number
of feature dimension should be smaller than the number of
dictionary atoms. Wright et al. [25] considered that selecting

feature dimension is not that critical, as long as enough
information is contained to recover the representation coef-
ficients. Moreover, a small number of features can reduce the
storage requirements and computational complexity. To cope
with nonlinear HSI, we apply the kernel-based-DR method
into the proposed multifeature-kernel SR-based framework
to obtain a small number of representation features. The
flowchart of the proposed MFKSRC method is shown in Fig. 1.

1) To obtain the more discriminative features of HSI,
multiple types of feature descriptors are applied to HSI
for extracting spectral–spatial information from original
spectral data.

2) KPCA is applied to original linear SRC for HSI classi-
fication and to generate new kernel SR-based methods,
which can efficiently handle nonlinear descriptors in
their reduced feature space.

3) Based on multitask learning theory, the single-feature-
based KSRC is extended to multiple feature kernel
learning framework for HSI classification.

The remainder of this paper is organized as follows.
Section II briefly introduces three feature descriptors and two
related kernel techniques (KSRC and KPCA). Section III
proposes the MFKSRC algorithm for HSI classification. The
effectiveness of the proposed algorithms is given in Section IV.
Finally, Section V concludes this paper.

II. MULTIPLE FEATURE LEARNING AND

RELATED KERNEL METHODS

In this section, we review some related works on multiple
feature descriptor for HSI and kernel tricks.

A. Multiple Feature Descriptor

Given a pixel y, three types of feature descriptors,
i.e., Gabor feature ygabor, LBP feature ylbp, and difference
morphological profile (DMP) feature yDMP, are introduced in
this section.

1) Gabor Filtering Feature: Gabor wavelets were intro-
duced to image analysis due to its biological relevance and
computational properties. The commonly used 2-D Gabor
function can be defined as follows:

ψμ,ν(z) = ‖kμ,ν‖2

σ 2 e
− ‖kμ,ν ‖2‖z‖2

2σ2

[
eikμ,ν z − e− σ2

2

]
(1)

where z = (a, b) denotes the spatial domain variable, and
kμ,ν = π/2 f ν ·ei·(πμ/8) denotes the frequency vector, in which
ν and μ define the scale and orientation of the Gabor function.
The number of oscillations under the Gaussian envelope is
determined by σ = 2π . The Gabor wavelet representation of
the pth principal component (PC) image Ip(a, b) for HSI is
the magnitude part of the convolution of the image with a
family of Gabor kernels defined by (1) in specific orientation
and scale

F p
μ,ν(x, y) = ψμ,ν(a, b) ∗ Ip(a, b) (2)

and the Gabor filtering feature of a pixel y located at (a, b)
associated with the pth PC image is given by

yp
gabor = [

F p
1,1(a, b), . . . , F p

μ,ν(a, b)
] ∈ Rμν. (3)
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Fig. 1. Schematic illustration of the proposed MFKSRC algorithm with multiple feature discriptors in their reduced kernel subspace for HSI.

Then, the Gabor feature of a pixel y is obtained by
stacked all the L PC-features yp

gabor, i.e., ygabor =
{ yp

gabor}p=1,...,L ∈ RμνL .
2) LBP Texture Feature: For each PC image Ip(a, b),

the LBP codes of a center pixel y in a local neighborhood
can be obtained by comparing its value with its neighboring
pixels in a single scan, which can be represented by

LBPu,r =
u−1∑
u=0

s(gt − gc)2
t

s(x) =
{

1 x ≥ 0

0 x < 0
(4)

where gc and gt denote the gray value of the center pixel
and its neighboring pixels (in a local circle), u denotes the
number of neighboring pixels, and r denotes the radius of the
neighborhood. The output of LBP operator in (4) is an u-bit
binary string. After obtaining the LBP code image, the LBP
histogram feature is computed over a local patch so × so.
As mentioned in [47], the dimensionality (i.e., number of bins)
of the LBP features is u(u − 1) + 3 for each PC image. For
HSI, the LBP feature of a pixel y of L PC image is defined
as ylbp ∈ R(u(u−1)+3)L.

3) DMP Shape Feature: For shape feature extraction,
Morphological profiles (MPs) [48], performing a series of mor-
phological openings and closings with a family of structuring
elements (SEs) of increasing size, are widely adopted to extract
shape information for HSI. Let γ SE(Ip) and φSE(Ip) define
the morphological opening and closing by reconstruction with
the SEs for each PC image Ip(a, b), and s p

MP is defined using
a series of SEs with increasing sizes on Ip

s p
MPγ = {

sMP
τ
γ (Ip) = γ τ (Ip), ∀τ ∈ [0, n]}

s p
MPφ = {

sMP
τ
φ(Ip) = φτ (Ip), ∀τ ∈ [0, n]}

with

γ 0(Ip) = φ0(Ip) = Ip (5)

where τ denotes the radius of the disk-shaped-based SEs.
Then, s p

DMP are computed as the slopes of s p
MP with an

increasing SE series as follows:

s p
DMPγ = {

sDMP
τ
γ (I ) = |sMP

τ
γ (Ip)− sMP

τ−1
γ (Ip)|

}
s p

DMPφ = {
sDMP

τ
φ(I ) = |sMP

τ
φ(Ip)− sMP

τ−1
φ (Ip)|

}
. (6)

Then, s p
DMPγ and s p

DMPφ are concatenated into a s p
DMP vector

for each PC image. For HSI, the DMP feature of a pixel y
of L PC image is defined as yDMP ∈ R2nL .

B. Kernel Tricks

For HSI, given original input space Rh and the data sets
D = {d1, d2, . . . , dN }, N samples included, where di ∈ Rh

denotes a vector with h-dimensional feature, i = 1, 2, . . . , N .
To make the samples separable, we give the nonlinear mapping

 from original feature space to high-dimensional (even
infinite dimensional) kernel space as follows:


 : Rh �→ F D �→ 
(D) = [φ(d)1, . . . , φ(d)H ]T (7)

where F denotes the mapped feature space, 
 denotes the
corresponding kernel function, and H 	 h denotes the
dimension of feature space F . The main idea of kernel tricks
is to employ a kernel function defined in the input space and
indirectly operate the dot product in the higher dimensional
feature space. The kernel trick can be formulated as

k(di , d j ) = 〈φ(di ), φ(d j )〉 (8)

where operator 〈·〉 denotes input operator and k(·) denotes the
defined kernel function. Generally, the kernels should satisfy
the Mercer’s condition [49] such as continuous, symmetric,
and positive semidefinite properties.
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III. PROPOSED MULTIPLE FEATURE KERNEL SPARSE

REPRESENTATION CLASSIFIER

A. Multiple-Feature-Based Sparse Representation Classifier

The sparse coding obtained by single-feature-based dic-
tionary only can reflect the sparse pattern from one
perspective. To fully exploit the discriminative coding patterns,
multiple coding coefficients of different representation patterns
are learned from multiple-feature-based dictionary set, which
constructed by different kinds of feature descriptors. In the
multiple-feature-based SR model, each pixel is described by
M different modalities of discriminative features. Suppose that
we are given C distinct classes and a set of Nc dictionary
atoms per class. For each feature modality denoted by m with
hm dimensions, let Dm

c ≡ {dm
1,c, . . . , dm

Nc,c} ∈ Rhm×Nc (m =
1, . . . ,M; c = 1, . . . ,C) denotes the subdictionary of the
mth feature corresponding to the cth class and N = ∑

c Nc.
Construct a new dictionary Dm associated with the mth feature
as the concatenation of subdictionary Dm

c from all the classes
as

Dm = {Dm
1 , . . . ,Dm

C

}
= {

dm
1,1, . . . , dm

N1,1| · · · |dm
1,C, . . . , dm

NC ,C

}
. (9)

For each test pixel y = { ym}m=1,...,M (with M features) of
unknown class, we denote ym as the mth modality of the
feature descriptor. Based on multitask learning [38] theory,
the multifeature-based sparse representation model can be
formulated as

Â = arg min
αm

1

2

M∑
m=1

∥∥∥∥∥ym −
C∑

c=1

Dm
c αm

c

∥∥∥∥∥
2

2

+ λ

C∑
c=1

∥∥αm
c

∥∥
1

= arg min
αm

1

2

M∑
m=1

‖ym − Dmαm‖2
2 + λ‖αm‖1 (10)

where λ is a positive parameter, A = {αm}m=1,...,M and
αm = [αm

1 , . . . , α
m
N ]T is the sparse coefficient of the mth

feature ym over the mth dictionary Dm . Once {αm}m=1,...,M is
obtained, the label of pixel { ym}m=1,...,M described by multiple
features is determined according to the minimum residual
between { ym}m=1,...,M and its approximations obtained over
their corresponding subdictionaries {Dm}m=1,...,M , i.e.,

class(y) = arg min
c=1,...,C

M∑
m=1

‖ym − Dmδm(αm)‖2
2 (11)

where δm is the characteristic function [25] for the mth feature
that chooses coefficients associated with class c and makes the
rest to zero.

B. Dimensionality Reduction in Kernel Space

As we all know, samples of HSI are not linearly separable.
Linear SR model is inadequate to represent the nonlinear
structures of samples. To capture the nonlinear characteristic of
samples, nonlinear SR model was adopted by projecting the
samples into a high-dimensional feature space using kernel
tricks. By introducing nonlinear mapping 
, original linear

SRC is extended to nonlinear SRC (i.e., KSRC)

α̂ = arg min
α̂

‖
(y)−
(D)α‖2
2 + λ‖α‖1

= arg min
α̂

‖K (D, y)− Gα‖2
2 + λ‖α‖1 (12)

where K (D, y) = [k(d1, y), . . . , k(dN , y)]T ∈ RN×1 and
G = 

T ∈ RN×N denote the kernel Gram matrix with
Gi, j = k(di , d j ). However, samples in kernel space are often
of very high or possibly infinite dimensionality, and the sparse
representation with �1-regularizer in the space is impractical.
It is essential for a method to be able to capture the nonlin-
ear characteristic of samples in a low-dimensional (reduced)
subspace. Note that KPCA [50] applies kernel methods by
nonlinearly mapping the data samples into a new kernel-
induced space, where DR is ultimately implemented simulta-
neously. Hence, by integrating KPCA into linear SRC, a novel
kernel SRC can be formulated as

α̂ = arg min
α̂

‖PT
(y)− PT
(D)α‖2
2 + λ‖α‖1 (13)

where P = [P1, . . . ,Ps] ∈ RH×s (H 	 s, s is the
dimension of projected subspace) is the projection matrix
associated with KPCA. As we know, it is difficult to select an
appropriate kernel function for kernel-based methods. Some
widely adopted kernel functions are based on Euclidean inner
product and Euclidean distance, including linear kernel

k(di , d j ) = dT
i d j (14)

polynomial kernel

k(di , d j ) = (
a + dT

i d j
)b (15)

and Gaussian kernel

k(di , d j ) = ex p

(
−‖di − d j‖2

2σ 2

)
, σ ∈ R

+ (16)

where a, b, and σ are the kernel parameters. Each of them
transfers samples to a specific higher dimensional space
which is determined by the form of the corresponding kernel
function.

C. Multiple Feature Kernel Sparse Representation Classifier
Again, the sparse coding in different kinds of feature space

can capture different discriminative characteristics, and the
joint exploitation of sparse coding in multiple-feature-based
space can lead to an improved classification performance
for HSI. Meanwhile, KPCA is adopted to capture the intrin-
sic nonlinear characteristic of different kinds of features in
the low-dimensional subspace. Inspired by the above ideas,
we develop a classification framework for the integration
of different sparse patterns in multiple-feature-based kernel
subspace, and propose an MFKSRC for HSI classification.
It can be formulated as

Â = arg min
αm

M∑
m=1

∥∥PT
m


m(ym)− PT
m


m(Dm)αm
∥∥2

2 + λ‖αm‖1

(17)

where 
m(ym) denotes the unlabeled pixel in the kernel space
associated with the mth modality of feature, 
m(Dm) denotes
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the training kernel dictionary associated with feature m,
and P = {Pm}m=1,...,M (Pm ∈ R

Hm×sm , Hm 	 sm , sm

denotes the subspace dimension associated with feature m)
denote the transformation matrices via KPCA for each
feature. By introducing the kernel Gram matrix K m =

m(Dm)T
m(Dm) ∈ R

N×N and kernel vector km(·, ym) =
[km(dm

1 , ym), . . . , km(dm
N , ym)] (associated with feature m),

and K m
i j = km(di , d j ), (17) can be rewritten as

Â = arg min
αm

M∑
m=1

∥∥PT
m km(·, ym)− PT

m K mαm
∥∥2

2 + λ‖αm‖1.

(18)

The problem of (18) is known as the multitask joint covariate
selection model in sparse learning, and can be efficiently
solved by several �1-minimization problem. Once obtain-
ing the multifeature sparse coefficients Â = {αm}m=1,...,M ,
we classify { ym}m=1,...,M in term of Â. We use the minimum
residual between y and its c approximations in the reduced
subspace to determine the label of { ym}m=1,...,M

class(y) = arg min
c

M∑
m=1

∥∥PT
m km(·, ym)− PT

m K mδm
c (α

m)
∥∥2

2.

(19)

The classification procedure of MFKSRC is described in
Algorithm 1.

Algorithm 1 Proposed MFKSRC for HSI
1: Input: 1) A HSI containing training dictionary;

2) Parameters: λ, subspace dimension sm

2: Initialization:

1) Extract multiple features for each pixel of HSI;
2) Construct multi-feature dictionary {Dm}m=1,...,M

of M features, where Dm
c = {dcj }Nc

j ∈ Rhm×Nc is
subdictionary associated with class c;
3) Select suitable Mercer kernel km(·, ·) and compute
the kernel Gram matrix associated with the m-th
feature K m ;
4) Obtain the projected matrix P = {Pm}m=1,...,M via
KPCA, and normalize the columns of Pm T K m and
to have unit �2-norm;

3: for each unlabeled pixel { ym}m=1,...,M in HSI do
4: 1) Compute the kernel vertor km(·, y), and normalize

each column of Pm T km(·, ym) to have unit �2-norm;
5: 2) Code { ym}m=1,...,M over multi-feature dictionary

{Dm}m=1,...,M , obtain the multifeature sparse represen-
tation Â = {αm}m=1,...,M by optimization Eq. (18);

6: 3) Decide the final label of { ym}m=1,...,M based on (19).
7: end for
8: Output: A 2-D map which records the labels of the HSI.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the efficacy of the proposed MFKSRC algo-
rithm, we adopt three publicly available hyperspectral data
sets1: the Airborne Visible/Infrared Imaging Spectrometer

1Available online: http://www.ehu.es/ccwintco/index.php.

(AVIRIS) (Indian Pines) image, the Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) University of Pavia
image, and the AVIRIS Kennedy Space Center (KSC) image.
For comparison purpose, we compare the proposed MFK-
SRC method with several widely used state-of-the-art clas-
sifiers, including the spatial SVM classifier by composite
kernel (SVM-CK [54]), the nearest regularized subspace
(NRS) classifier [55], the joint sparse representation-based
classifier (namely, SOMP [28]), the MASR classifier [36],
the extended multi-attribute profiles (EMAPs)-based multiple
nonlinear feature learning classifier (MNFL [22]), and the
pixel-wise multiple feature adaptive sparse representation
classifier (MFASR [56]). When the selected feature number
reduce to 1, MFKSRC converts to be single-feature-based
method (namely, SFKSRC). Based on the aforementioned
multiple features, the optimal features for the three HSIs are
different. For SFKSRC, we adopt DMP feature for Indian
Pines image and Gabor feature for the other two HSIs. In our
experiments, the average individual class accuracy [%], overall
accuracy (OA) [%], average accuracy (AA) [%], and kappa
coefficient (κ) [%]) for different classifiers are adopted by
the average results over 10 independent Monte Carlo (MC)
runs, and the corresponding standard deviation is considered
to evaluate the statistical significance of the results.

For the multiple feature learning stage, original spectral fea-
ture and three feature descriptors (as described in Section II-A,
Gabor filtering feature [52], [57], LBP texture feature [51], and
DMP shape feature [53]) are adopted to describe each pixel of
the three HSI sets in our experiments. DR is applied to obtain
the first L-PC image for each feature descriptor. PCA is chosen
as the DR method. The detailed parameter values used in this
paper for the three feature descriptors are listed in Table I.

For MFKSRC, three different kernels (i.e., linear, polyno-
mial, and gaussian kernel) are adopted. As for the parameter
setting, we have two key parameters: regularizer parameter λ
and kernel parameter σ . Regularizer parameter λ is learned
by cross-validation (CV) in the range from 1e − 7 to 1e − 1.
For gaussian kernel, σ is set by the median of (1/‖di − d̄‖2),
i = 1, . . . , N , where d̄ is the mean of all training dictionary.
The stacked kernel is adopted for SVM-CK (with spatial
mean feature), which is implemented with the help of the
LIBSVM [58] package. For SOMP, the spatial scale is learned
by CV in the range from 3 × 3 to 11 × 11 for three
HSIs. For MASR, a multiscale combination of 3 × 3, 5 × 5,
7 × 7, and 9 × 9 is adopted for three HSIs. For MASAR,
four features, (i.e., spectral feature, EMP feature [6], Gabor
feature [15], and DMP [59]) are adopted for three HSIs, and
the parameter values for different features can be found in [56].
The sparsity level for joint sparse representation methods
(e.g., SOMP, MASR, and MFASR) is set to 3. All the
experiments are performed using MATLAB R2016a on Intel
Core i7-4790 CPU PC machine with 16 GB of RAM.

A. Hyperspectral Data Sets
Three HSIs are considered to validate the performance of

the proposed MFKSRC in several challenging scenarios.
1) Indian Pines Image: The first HSI in our experiment was

collected by the AVIRIS sensor over the Indian Pines
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TABLE I

PARAMETER SETTING FOR MULTIPLE FEATURE DESCRIPTORS

Fig. 2. Indian Pines data set. (a) RGB false color image (R:50, G:27,
and B:17). (b) Ground truth map containing 16 land cover classes.

region in Northwestern Indiana, USA, on June 12, 1992.
This original data set covers a mixed agricultural/forest
area, and consists of 145 × 145 pixels and 224 spectral
bands range from 0.4 to 2.5 μm with a spatial resolution
of 20 m per pixel. In our experiments, the number
of bands is reduced to 200 by removing four bands
full of zero and 20 water absorption bands. The scene
originally contains 16 different land cover classes (most
of which are different kinds of crops) and constitutes
a very challenging classification scenarios due to the
presence of unbalanced labeled classes and mixed pixels.
The false color image of three bands and the ground
truth map of 16 land cover classes are visually shown
in Fig. 2(a) and (b). Two kinds of sample selection meth-
ods, i.e., all 16 classes and nine classes with the maxi-
mum number (Corn-no till, Corn-min till, Grass/Pasture,
Grass/Trees, Hay-windrowed, Soybean-no till, Soybean
min till, Soybean-clean till, and Woods), are adopted for
the data set.

2) University of Pavia Image: The second HSI was
acquired by the ROSIS-03 (ROSIS-03) optical sensor,
which covers an urban area surrounding the University
of Pavia, Pavia, Italy, on July 8, 2002, with a pixel
response in 115 spectral channels that range from 0.43 to
0.86 μm covering the visible and infrared spectrum [1].
After removing the 12 noisy bands, the remaining
103 spectral bands are reserved for experiments. The
spatial size of the image is 610 × 340 pixels, and the
spatial resolution is 1.3 m per pixel. The false color
composite image and the ground truth map of nine land
cover classes are shown in Fig. 3(a) and (b), respectively.

3) KSC Image: The third HSI is gathered by AVIRIS over
the KSC, Brevard County, FL, USA, on March 23, 1996.

Fig. 3. University of Pavia data set. (a) RGB false color image (R:102, G:56,
and B:31). (b) Ground truth map containing nine land cover classes.

The data set contains 224 bands whose wavelength
covers the spectral range from 0.4 to 2.5 μm with a
spectral resolution of 10 nm, and the image size is
512 × 614 pixels with a spatial resolution of 18 m.
After removing water absorption and low signal-to-noise
bands, a total of 176 bands remained for experiments.
This scene contains 13 labeled classes of land cover.

B. Experimental Results of AVIRIS Indian Pines Image

1) Mechanism of the Proposed MFKSRC Classifier:
To exhibit the detail information of the proposed MFKSRC
method, we investigate the distribution of sparse coefficients
and the decision rule of the classifier in a visualization form.
As a comparison, single-feature-based method (SFKSRC) with
the aforementioned feature descriptors, i.e., spectral-feature-
based method (SFKSRC-Spec), Gabor-filtering-feature-based
method (SFKSRC-Gabor), LBP-texture-feature-based method
(SFKSRC-LBP), and DMP-shape-feature-based method
(SFKSRC-DMP), is also investigated in the experiment to
demonstrate the necessity of combining multiple features.
Fig. 4 shows the normalized sparse coefficients of these single-
and multifeature methods and the corresponding normalized
residuals for decision. In particular, nine classes are adopted
in this experiment for the Indian Pines data set. Based on the
features mentioned above, 50 atoms per class are randomly
chosen to construct the single- and multifeature dictionary set.
Then, a test pixel belonging to class 6 is represented as a
sparse linear combination of all the single- and multifeature
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Fig. 4. Representation coefficients obtained by (a) SFKSRC-Spec, (b) SFKSRC-Gabor, (c) SFKSRC-LBP, (d) SFKSRC-DMP, and (e) MFKSRC. Normalized
residuals obtained by (f) SFKSRC-Spec, (g) SFKSRC-Gabor, (h) SFKSRC-LBP, (i) SFKSRC-DMP, and (j) MFKSRC.

Fig. 5. Classification maps obtained by different classifiers for the AVIRIS Indian Pines image with 16 classes. (a) SVM-CK [54]. (b) NRS [55].
(c) SOMP [28]. (d) MASR [36]. (e) MNFL [22]. (f) MFASR [56]. (g) SFKSRC. (h) MFKSRC.

dictionary atoms. We plot recovered sparse coefficients when
a test pixel is represented as a sparse linear combination
of dictionary atoms constructed by different features. From
Fig. 4, most of the recovered coefficients are clustered
toward the atom index from 251 to 300 corresponding to
class-specific subdictionary from class 6. Moreover, the labels
of the unlabeled pixel for those methods are determined by
the minimum residual rule in their feature space, respectively.

2) Classification Results: The averaged classification results
of the proposed methods (SFKSRC and MFKSRC) and its
competitors with the 16 classes for the Indian Pines image over
10 times MC runs are listed in Table II, and the classification
maps are shown in Fig. 5. In the experiment, 10% of all labeled
pixels per class are selected as a balanced dictionary set
(or training samples); the remaining labeled pixels act as
the test set. The regularizer parameters for SFKSRC and

MFKSRC are learned with a value of 1e − 4 and 1e − 5 for
Indian pines image. In the proposed methods, the subspace
dimension is set as 100 for the Indian pines image. To investi-
gate the necessity of combining multiple features, we consider
SFKSRC with the optimal feature in the experiment. As can
be observed, the proposed MFKSRC method achieves an
OA result of 98.33%, which is superior to the pixel-wise
MFASRC and MNFL (with EMAPs) with a relative OA
gain of 3.47% and 3.36%. By integrating different aspects
of multiple modalities of the feature, MFKSRC outperforms
than the single-feature-based method (SFKSRC). Compared
to SOMP, the proposed single-feature method (SFKSRC)
with optimal feature has a less OA result than that of the
single-scale contextual information-based method. However,
combining multiple features with SFKSRC, the multifeature
method (MFKSRC) yields a better OA result than does the
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TABLE II

CLASSIFICATION ACCURACY (%) OBTAINED BY DIFFERENT CLASSIFIERS ON THE INDIAN PINES IMAGE
USING 10% DICTIONARY ATOMS (OR TRAINING SAMPLES) FOR EACH CLASS

Fig. 6. OA results of the proposed MFKSRC with three kernels over a
different number of dictionary atoms on the Indian pines image.

multiple-scale contextual information-based method (MASR).
Moreover, the proposed methods also show a better perfor-
mance than do the other two state-of-the-art methods, i.e., NRS
and SVM-CK.

3) Influences of Dictionary Size: To evaluate the effect of
dictionary size of the proposed multikernel-based method,
we examine the OA results (shown in Fig. 6) for MFKSRC
with three kernels (i.e., linear, polynomial, and Gaussian)
over a different number of dictionary atoms on the Indian
Pines image (nine classes). SFKSRC with different features
based on the Gaussian kernel is selected as baseline methods.
We randomly select 20–90 labeled pixels per class as dictio-
nary sets, and the remaining samples act as a test set. From
Fig. 6, among three multikernel methods based on multiple-
feature space, the Gaussian-kernel method yields the best
performance; polynomial-kernel method is better than linear-
kernel method. Moreover, multifeature-kernel-based methods
outperform single-feature-kernel methods.

4) Evaluation of Kernel Projected Subspace: To find an
optimal number of kernel subspace by using KPCA, the

Fig. 7. OA results of the proposed MFKSRC method over different
dimensionalities of subspaces on the AVIRIS Indian pines image.

averaged OA results of the MFKSRC with different reduced
space dimensions of 40, 50, 60, 70, 80, 90, 100, 110,
and 120 are reported in Fig. 7. For comparison purpose,
a standard SR-based method with PCA as a preprocess-
ing step (namely, SRC-PCA) and two single-feature-based
SR methods (SFKSRC-Spec-Gaussian and SFKSRC-LBP-
Gaussian) are considered in the experiment. As observed
in Fig. 7, the OA performance of SRC-PCA, two SFKSRC,
and the MFKSRC with different kernels slightly improve along
with the number of projected dimension increase. Moreover,
the proposed multifeature kernel-based classifier has a higher
OA performance than that of single-feature and nonkernel-
based classifiers on all projected subspaces.

C. Experimental Results of ROSIS University of Pavia
The classification results (OA, AA, and κ) averaged over

10 MC runs of the proposed method and its competitors are
presented in Table III for the University of Pavia image. Sixty
labeled pixels per class are randomly chosen as dictionary
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Fig. 8. Classification maps obtained by different classifiers for the University of Pavia image with nine classes. (a) SVM-CK [54]. (b) NRS [55].
(c) SOMP [28]. (d) MASR [36]. (e) MNFL [22]. (f) MFASR [56]. (g) SFKSRC. (h) MFKSRC.

TABLE III

CLASSIFICATION ACCURACY (%) OBTAINED BY DIFFERENT CLASSIFIERS ON THE UNIVERSITY OF PAVIA IMAGE
WITH 60 DICTIONARY ATOMS (OR TRAINING SAMPLES) FOR EACH CLASS

atoms (or training samples) for SR-based methods (or SVM),
and the remaining labeled pixels as the test set. The regu-
larizer parameters for MFKSRC and SFKSRC are both set
as 1e − 5 for the University of Pavia image. The subspace
dimension is set as 100 for MFKSRC and SFKSRC. As can be
observed, by combining multiple features in kernel projected
subspace, the proposed MFKSRC yields a better classification
performance (an OA of 95.06%) than do the two typical
multiple feature methods (MFASR and MNFL). Although the
proposed SFKSRC has a lower classification performance than
that of single-scale contextual-feature-based method (SOMP),
the proposed MFKSRC significantly outperforms the single-
and multiple-scale contextual-feature-based methods (SOMP

and MASR), and also outperforms other compared classi-
fiers (including NRS and SVM-CK). Moreover, the corre-
sponding classification maps obtained by the classifiers as
mentioned earlier are shown in Fig. 8. Then, the averaged OA
results of the proposed MFKSRC method with three kernels
and SFKSRC with different features based on the Gaussian
kernel along with a different number of dictionary atoms
per class are presented in Fig. 9. MFKSRC with different
kernels shows a better and more stable performance than does
the single-feature-based methods along with the number of
dictionary atoms per class from 20 to 90, in which 500 pixels
per class are randomly chosen to be test samples. Fig. 10
shows the OA results of MFKSRC with multiple kernels and
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Fig. 9. OA results of the proposed MFKSRC with three kernels over a
different number of dictionary atoms on the University of Pavia image.

Fig. 10. OA results of the proposed MFKSRC method over different
dimensionalities of subspaces on the University of Pavia image.

its compared methods (two SFKSRC and SRC-PCA) under
different dimensionalities of reduced subspace in the range
from 40 to 120. In this case, 60 labeled pixels per class are
randomly chosen as a dictionary set, and 500 pixels per class
are randomly chosen to a test set. It can be seen that MFKSRC
consistently outperforms single-feature-based method and the
standard SR-based method with PCA as a preprocessing step.

D. Experimental Results of Kennedy Space Center Image
The global accuracies (OA, AA, and κ) obtained by aver-

aging 10 MC runs of the proposed MFKSRC, and its com-
petitors are reported in Table IV for the KSC image. In the
experiments, we randomly choose 10 labeled pixels per class
as dictionary atoms and the remaining as the test set. The reg-
ularizer parameters for SFKSRC and MFKSRC are set to be
1e−5 and 1e−4 for the KSC image. The subspace dimension
is set to 80 for the proposed methods. It can be observed from
Table IV that the proposed methods (SFKSRC and MFKSRC)
outperform other state-of-the-art classifiers [including two
multiple feature methods (MFASR and MNFL), two spatial
contextual-based classifiers (SOMP and MASR), NRS, and

Fig. 11. OA results of the proposed MFKSRC with three kernels over a
different number of dictionary atoms on the KSC image.

Fig. 12. OA results of the proposed MFKSRC method over different
dimensionalities of subspaces on the KSC image.

SVM-CK] in terms of classification performance for KSC
image. In Fig. 11, we plot the averaged OA results of the
MFKSRC with three widely used kernel methods under a
different number of dictionary atoms for the KSC image.
It can be seen that MFKSRC with various kernels have similar
OA performance, and outperform single-feature-based method.
Fig. 12 illustrates the influence of subspace dimension on the
OA results of the proposed MFKSRC. From Fig. 12, MFKSRC
with different kernels has a stable OA results over different
dimensionalities of subspace in the range from 40 to 120
for the KSC image and outperforms than single-feature-based
method and the standard SR-based classifier with PCA as a
preprocessing step.

E. Running Time and Statistical Difference
In this section, we first investigate the running time of the

SFKSRC and MFKSRC, and the averaged CPU times over
10 MC runs of the two methods with a different number of
dictionary atoms per class and subspace dimension on two
HSIs are presented in Tables V and VI, respectively. For the
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TABLE IV

CLASSIFICATION ACCURACY (%) OBTAINED BY DIFFERENT CLASSIFIERS ON THE KSC IMAGE WITH 10 DICTIONARY
ATOMS (OR TRAINING SAMPLES) FOR EACH CLASS

TABLE V

RUNNING TIME (SECONDS) OBTAINED BY THE PROPOSED METHOD WITH

A DIFFERENT NUMBER OF DICTIONARY ATOMS PER CLASS AND
DIFFERENT DIMENSIONS OF PROJECTED SPACE FOR THE

INDIAN PINES IMAGE (NINE CLASSES)

TABLE VI

RUNNING TIME (SECONDS) OBTAINED BY THE PROPOSED METHOD WITH
A DIFFERENT NUMBER OF DICTIONARY ATOMS PER CLASS AND

DIFFERENT DIMENSIONS OF PROJECTED SPACE FOR

THE UNIVERSITY OF PAVIA IMAGE

proposed methods, the dominant computational cost comes
from the learning of sparse coding via �1-norm regularization
problem in multiple-feature-based kernel subspace, which is
implemented by the Least Angle Regressions method via
the SPArse Modeling Software package [60], [61]. In the
experiments, 20–70 labeled pixels are chosen as training
dictionary per class, the remaining labeled pixels are used as
test samples for the Indian Pines image, and 500 labeled pixels
are used as test samples for the University of Pavia image.
From Tables V and VI, MFKSRC costs more time than does
the SFKSRC owing to multitask learning. When dealing with
an increasing number of dictionary atoms, much computing
time is required for SFKSRC and MFKSRC. Likewise, as the
projected dimensionality increases, the computation time for
SFKSRC and MFKSRC increases.

Considering the classification results obtained by the pro-
posed MFKSRC with different kernels are apparently similar,

TABLE VII

MCNEMAR’S TEST OF THE PROPOSED MFKSRC WITH

MULTIPLE KERNEL METHODS

we analyze the statistical differences among all the considered
kernel methods using McNemar’s test. If the test statistic
|Z | > 1.96, the difference in accuracy between two classifiers
is regarded as statistically significant at the 5% level of
significance [62]. As it can be observed from Table VII, for
the Indian Pines image, the Gaussian-kernel-based method
is superior to ploy- and linear-kernel-based methods, and
linear-kernel-based method is superior to the ploy-kernel-
based method. For the University of Pavia image, the Gaussian
method is superior to the polynomial method in a few cases
and is worse than comparable in most cases. The Gaussian
method is superior to the linear method in most cases, and lin-
ear method is worse than polynomial method (|Z | < −1.96).
For the KSC image, the Gaussian-kernel-based method is
superior to ploy- and linear-kernel-based methods in most
cases; the linear method is worse than the polynomial method
in a few cases, and is superior to the polynomial method in
most cases.

V. CONCLUSION

In this paper, we propose a novel MFKSRC for HSI
classification, which seeks a low-dimensional representation in
multifeature-based kernel space, in which MFKSRC achieves
better classification and becomes more efficient. To cope with
the nonlinear distribution of multiple features, kernel tricks are
applied to carry original input space of different descriptors
to high-dimensional kernel feature space, which leads to the
time-consuming procedure or even infeasible optimization for
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the succeeding SR-based model (�1-minimization problem).
To overcome this problem, we adopt KPCA as a preprocessing
stage in the multifeature-based kernel space to convert the
problem into a feasible optimization problem. Subsequently,
these learned multiple features of HSI in its reduced ker-
nel space are then extended to multiple feature SR-based
model to obtain the multifeature-kernel-based representation
coefficients. The decision rule of the proposed MFKSRC
builds on the minimal residual between the test pixel and
its approximations obtained over each class subdictionaries
in their reduced kernel space. Experimental results on three
commonly used HSI data sets confirm that the MFKSRC
methods can provide a satisfying classification performance,
compared with the other state-of-the-art SR-based algorithms
and SVMs. The future work is to study the extended MFKSRC
based on multiple DR techniques.
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