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Multikernel Adaptive Collaborative Representation
for Hyperspectral Image Classification

Peijun Du , Senior Member, IEEE, Le Gan , Member, IEEE, Junshi Xia , Member, IEEE, and Daming Wang

Abstract— To adequately represent the nonlinearities in the
high-dimensional feature space for hyperspectral images (HSIs),
we propose a multiple kernel collaborative representation-based
classifier (CRC) in this paper. Extended morphological profiles
are first extracted from the original HSIs, because they can
efficiently capture the spatial and spectral information. In the
proposed method, a novel multiple kernel learning (MKL) model
is embedded into CRC. Multiple kernel patterns, e.g., Naive,
Multimetric, and Multiscale are adopted for the optimal set
of basic kernels, which are helpful to capture the useful infor-
mation from different pixel distributions, kernel metric spaces,
and kernel scales. To learn an optimal linear combination of
the predefined basic kernels, we add an extra training stage
to the typical CRC where kernel weights are jointly learned
with the representation coefficients from the training samples
by minimizing the representation error. Moreover, by consid-
ering different contributions of dictionary atoms, the adaptive
representation strategy is applied to the MKL framework via
a dissimilarity-weighted regularizer to obtain a more robust
representation of test pixels in the fused kernel space. Exper-
imental results on three real HSIs confirm that the proposed
classifiers outperform the other state-of-the-art representation-
based classifiers.

Index Terms— Collaborative representation (CR), extended
morphological profiles (EMPs), hyperspectral image (HSI)
classification, multiple kernel learning (MKL).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), which contain
rich spectral information in hundreds of narrow

contiguous spectral bands, have been widely applied in a
variety of applications, such as target detection [1], anomaly
detection [2], [3], and classification [4]. Classification is
an active topic in hyperspectral remote sensing. In recent
years, different kinds of classifiers, such as support vector
machines (SVMs) [4], [5], multinomial logistic regression [6],
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extreme learning machine [7], and random forests [8], have
been proposed for HSIs. Recently, representation-based
classifiers [9], [10], which do not consider any sample prior
distribution, gradually become a hot topic in HSI classification
tasks [11]–[17]. The basic idea of such classifiers is that a test
pixel can be linearly represented by some labeled samples,
namely, dictionary. The class label of a given test pixel can
be determined according to the class whose subdictionary
provides the minimum representation error.

The representation coefficients can be solved by optimizers
with different regularizations. The available methods can be
divided into two main categories: sparse representation (SR)
with �0-norm or �1-norm minimization and collaborative
representation (CR) with �2-norm minimization. In [9],
the SR model, which assumes that a test pixel can be
linearly represented by only a few atoms from the training
dictionary, was initially proposed for face recognition.
In CR-based classifier (CRC) [10], the test pixel is linearly
represented by all the training atoms. Based on different
representation mechanisms, all the atoms have an equal
opportunity to participate in the representation of a given
test pixel in the CR-based model, whereas only a few atoms
have the chance to represent the test pixel in the SR-based
model [18]. In [19], the SR-based model was adopted for
HSI classification task and achieved a good classification
result. In [20], et al. proposed a fused representation-
based classification framework by integrating the SR- and
CRbased model via a suitable balance parameter in residual
domain.

Due to the fact that the number of dictionary atoms is
very limited and the spectral features are strongly correlated,
the traditional representation based-classifiers often achieve
very noisy results. To achieve satisfactory classification
performance, different strategies, such as spatial joint represen-
tation model [11], [21], adaptive representation [22], spectral–
spatial features [15], [23], and kernel strategy [24], [25],
are applied to the traditional representation-based classi-
fiers. Integrating spatial neighborhood information to SRC,
Chen et al. [11] proposed a joint SRC (JSRC) via a joint
sparsity model to increase the accuracy of SRC because
neighboring pixels usually belong to the same class. Inspired
by JSRC, Li and Du [21] further proposed a joint CRC (JCRC)
by jointly using the neighboring spatial information. Besides,
adaptive representation via dissimilarity-weighted regulariza-
tion is widely applied to representation-based classifiers.
In [26] and [27], weighted SRC adaptively exploits the simi-
larity between the test pixel and each dictionary atom in the SR
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model. Gan et al. [28] proposed an adaptive SRC based on the
locality constrained dictionary for HSI classification. In [22],
a CRC, called nearest regularized subspace (NRS), was
proposed for HSI classification, where a distance-weighted
Tikhonov regularization was adopted to calculate the similarity
between the test pixel and the within-class dictionary atoms.
Moreover, the resulted coefficients carry a meaning that they
reflect the relative importance of each dictionary atom.

In addition, many studies [29]–[36] demonstrate that
spectral–spatial features can effectively enhance the classifi-
cation performance of HSI. Kang et al. [29] proposed a novel
principal component analysis (PCA)-based edge-preserving
features method for HSI classification. In [30], a Gabor
filtering-based NRS classifier was investigated. Jia et al. [31]
proposed a 3-D Gabor feature-based CR model. In [32],
an extended random walker-based method was proposed for
spectral–spatial classification. Combining extended morpho-
logical profiles (EMPs) with classifiers is one of the widely
used strategies for HSI classification. In [33] and [34], EMPs
are used to exploit the spatial information, which can improve
the classification performance. When samples are not linearly
separable, linear representation is inadequate for representing
the nonlinear structures of samples. To address this issue,
Gao et al. [24] proposed a nonlinear SRC (KSRC) to project
the samples into a high-dimensional feature space using
the kernel trick, where class separability can be improved.
In [25], the kernel version of a joint SRC was proposed
and denoted as KJSRC. In [14], a kernel CR with Tikhonov
regularization was introduced. In the kernel-induced space,
nonlinear representation-based classifiers can achieve better
accuracy than the linear representation-based classifiers.
However, the type of kernel function and its corresponding
parameters have to be selected appropriately, and it is difficult
to determine. Moreover, the capability of a predefined kernel
is insufficient in mining rich information from training
dictionary [37]. A typical solution is to learn an appropriate
combination of multiple kernel functions [38].

Recently, multiple kernel learning (MKL) methods, which
exploit learning an optimal combination of multiple kernels
instead of selecting a specific kernel function, have been
proposed in the literature [38]–[42]. The basic idea of MKL
methods focuses mainly on learning an optimal linear combi-
nation of a set of predefined kernels, known as basic kernels.
Single kernel-based methods lack the generalization capability
of dealing with samples with various distributions, multidi-
mensional and multiclass data, and data containing heteroge-
neous information. Compared to the single-kernel case, MKL
can provide a more flexible framework to combine multiple
kernels with different capabilities. In the remote sensing
literature, MKL has been successfully applied in HSI classi-
fication [37], [43]–[49]. In [43], a multiple kernel framework
for combining and assessing the relevance of multiple source
heterogeneous information in SVM-based classification was
proposed. In [44], a representative MKL was proposed to find
the max-variance kernel by learning the linear combination
of basic kernels and minimizing the Frobenius norm error.
In [45], an MKL model was proposed for urban classifica-
tion to integrate heterogeneous information from the spectral

images and the light detection and ranging data. In [46],
a superpixel-based classification framework via multiple
kernels was proposed. In [47], a discriminant MKL (DMKL)
was proposed to learn an optimal multiple kernel combina-
tion from predefined basic kernels by maximizing separa-
bility in reproduction kernel Hilbert space. Although those
MKL-based methods can achieve better classification perfor-
mance than single kernel-based methods, how to appropriately
construct a kernel combination and tune its kernel weights is
an important research topic that we need to solve.

To enhance the discrimination power of CRCs, by embed-
ding MKL into the CRC, we propose a multiple kernel
CRC (MKCRC) framework in this paper. In the framework,
PCA is first applied on the original HSI, and then spectral–
spatial features, i.e., EMPs, are extracted by performing on
the reserved PCs with a series of morphological opening
and closing operations. Then, multiple discriminate basic
kernels are constructed from the EMPs feature via different
types (or scales) of kernel mappings, and those basic kernels
are appropriately integrated into the typical CRC model
with different kernel weights via a novel MKL framework.
Specifically, a training stage is added to the standard CRC to
learn an optimal linear combination of multiple kernels. Based
on a minimum reconstruction error criterion, we can alternate
between solving for CR coefficients with fixed kernel weights
and, then, solving for kernel weights while keeping CR
coefficients fixed. Furthermore, an adaptive strategy is also
incorporated into MKCRC to obtain a more discriminative CR
coefficient, and a multiple kernel adaptive CRC (MKACRC)
is then proposed. The schematic of the proposed multiple
kernel CR-based classification framework is shown in Fig. 1.
Compared with the existing representation-based classifiers,
the main contributions of this paper are as follows:

1) To enhance the discrimination ability of CRCs,
we propose a multiple kernel CRC to integrate multiple
discriminative kernels for HSI. The kernel weights of
multiple kernels are determined by minimizing the repre-
sentation error of a set of training samples.

2) Multiple available kernel patterns are applied to the
proposed MKL framework. The adopted predefined
kernels are categorized into three different types,
i.e., Naive, Multimetric, and Multiscale.

3) An adaptive strategy is integrated into the traditional
CR model using dissimilarity-weighted regularization
term in the multiple kernel-induced space, which is
helpful to integrate locality structure information for
MKCRC.

The outline of this paper is organized as follows.
In Section II, the typical CRCs and MKL are briefly reviewed.
In Section III, the proposed multiple kernel CR-based
classification framework is presented. The effectiveness of the
proposed multiple kernel CRCs is investigated in Section IV.
Concluding remarks are given in Section V.

II. CR-BASED CLASSIFIERS AND MKL

Let D = {Dc}Cc=1 ∈ R
B×N be a class-specific dictio-

nary set of C classes for HSI (with N training atoms),
where B denotes the feature dimension. The subdictionary
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Fig. 1. Schematic of the proposed multiple kernel CR-based classification framework.

Dc = [dc,1, dc,2, . . . , dc,Nc ] is associated with the
cth class (

∑C
c=1 Nc = N) and dc,i denotes the i th atom in Dc.

A. CR-Based Classifiers

In CRC [10], a test pixel y can be represented as a linear
combination of all training atoms in dictionary D with an
�2-regularizer on the coefficient vector. The coefficient vector
α ∈ R

N can be solved by an �2-norm regularization, that is,

α̂ = arg min
α
‖y −Dα‖22 + λ‖α‖22 (1)

where λ denotes a global regularization parameter that
balances the minimization between the approximation error
and the �2-norm term. Then, (1) can be solved with a closed-
form solution as

α̂ = (DT D + λI)−1DT y (2)

where I denotes the identity matrix. Generally, samples
of HSI are not linearly separable in original input
space. To cope with the problem, kernel trick has been
successfully applied to the HSI classification [50]. The
linearly inseparable samples in original space R

B are
mapped into a high-dimensional reproducing kernel
Hilbert space H via nonlinear mapping, where samples
become linearly separable. Let define the nonlinear
mapping �: R

B �→ H corresponding to a kernel function
K (d i , d j ) =

〈
�(d i ),�(d j )

〉 = �(d i )
T �(d j ) [51]–[53].

Then, the CR-based representation in kernel space H can be
reformulated as follows:

α̂ = arg min
α
‖K (D, y)− Gα‖22 + λ‖α‖22 (3)

where K (D, y) = [K (d1, y), . . . , K (d N , y)]T ∈ R
N×1,

and G = �(D)T �(D) ∈ R
N×N denotes the kernel Gram

matrix with Gi j = K (d i , d j ) and �(D) = {�(d1),
�(d2), . . . ,�(d N )}. The most widely used kernel is the
Gaussian radial basis function (RBF) kernel, which is given
as follows:

K (d i , d j ) = exp

(
−‖d i − d j‖2

2σ 2

)
, σ ∈ R

+ (4)

where σ denotes the bandwidth parameter of Gaussian RBF
kernel, which controls the smoothness of kernel measure.
Similar to (2), the coefficient vector α can be obtained in a
closed-form solution

α̂ = (GT G + λI)−1GT K (D, y) (5)

After obtaining the coefficient vector α in kernel space H,
we can classify the test pixel y based on the minimum
residual criterion in the kernel-induced space as follows:

class(y) = arg min
c=1,...,C

‖K (D, y)− Gcαc‖22 (6)

where Gc denotes the cth subdictionary in kernel space,
and αc denotes the class-specific coefficients associated with
the cth class.

B. Multiple Kernel Learning

Selecting a suitable kernel function and tuning its para-
meters are important issues in the kernel-based methods.
A feasible method, known as MKL, is to adopt a linear
combination function to integrate a series of predefined
kernels into an ensemble kernel. The predefined kernel can
be constructed from different sample distributions, metric
spaces, or parameters (e.g., scales). The MKL framework aims
at finding appropriate weight coefficients for best fusing the
given basic kernels. After constructing a series of basic kernel
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functions {Km}Mm=1, an ensemble kernel is then formulated
as follows:

K (d i , d j ) =
M∑

m=1

βm Km(d i , d j )

s.t. βm ≥ 0, and
M∑

m=1

βm = 1 (7)

where M denotes the total number of the predefined basic
kernels, and βm denotes the weight of the mth basic kernel
function Km(d i , d j ). The ensemble kernel can extract richer
discriminative information using multiple basic kernels from
data samples than single kernel-based methods. In order to
ensure the ensemble kernel satisfies the positive semidefinite
condition, all the weight coefficients are nonnegative and sum
to one [49].

III. MULTIPLE KERNEL ADAPTIVE COLLABORATIVE

REPRESENTATION-BASED CLASSIFIER

A. Problem Formulation

As the kernel CR model in Eq. (3) presents the adopted
kernel plays a vital role for the problem. Determining a
suitable kernel function and adjusting its parameters for the
kernel CR model are challenging tasks. The MKL methods,
which suggest adopting an appropriate combination of a series
of basic kernel to instead of the single kernel function,
are adopted to tackle this problem. The MKL framework
not only allows the kernel-based methods from selecting
an optimal basic kernel as the best kernel within a time-
consuming procedure but also presents a fused framework
by combining multiple heterogeneous information based on
different discriminate kernel function. To make full use of the
discriminative information contained in samples or features,
by embedding the MKL model in a CR-based method,
we propose a multiple kernel CR-based classification frame-
work (namely, MKCRC) based on EMPs feature. In this
framework, MKL is applied to capture information from
different sample distributions, kernel metric spaces, and scale
levels, and a joint multiple kernel CRC with different kinds of
kernel patterns is achieved. To further exploit different contri-
butions of the dictionary atoms in representing a test pixel,
the adaptive version MKCRC, namely, MKACRC, is also
proposed in this paper. The goal of the proposed multiple
kernel CRCs is to learn an ensemble kernel (i.e., an optimal
linear combination of a series of basic kernels) from a set of
training samples. Specifically, a training stage is added to the
traditional CRC to learn the kernel weights of basic kernels
by minimizing the total reconstruction residual of the training
samples, boosting the representation power of the training
dictionary in an ensemble kernel space.

Let D = {Dc}Cc=1 ∈ R
B×N be a set of available training

dictionary, where Dc denotes the class-specific dictionary
associated with the cth class. As stated previously, suppose
we have a set of M candidate basic kernels {Km}Mm=1, which
are produced by either M different kernel types such as linear,
polynomial, and Gaussian kernels, by M different metric-
based kernels, or by the sample kernel function, but with

M different parameters (or scales). Given a set of training
samples Y = { y1, y2, . . . , yP} ∈ R

B×P with P samples,
and X = {α1,α2, . . . ,αP } ∈ R

N×P denotes the coding
coefficient matrix of training samples Y in the ensemble kernel
space. Similar to (7), the corresponding multiple kernel Gram
matrix G can also be generated by a series of basic kernel
Gram matrices {Gm}Mm=1, formulated as follows:

G =
M∑

m=1

βm Gm s.t. βm ≥ 0, and
M∑

m=1

βm = 1. (8)

Embedding the ensemble kernel into (3), and the CR of Y over
dictionary D in the ensemble kernel space can be formulated
as follows:

〈X̂, β̂〉 = arg min
X,β

∥∥∥∥∥
M∑

m=1

βm Km(D, Y )−
M∑

m=1

βm Gm X

∥∥∥∥∥
2

F

+ λ‖X‖2F
s.t. βm ≥ 0, and

M∑

m=1

βm = 1 (9)

where Km(D, Y ) = {Km(D, y1) . . . , Km(D, yP)},
and Gm denotes the mth basic kernel Gram matrix.
The proposed multiple kernel CR model can alternately learn
the discriminative CR coefficient matrix X and the kernel
weight vector β for multiple kernels.

However, the multiple kernel CR model in Eq. (9) does not
consider the dissimilarity (or distance) information between
the unlabeled test pixel and each atom of the dictionary. The
atoms that are far from the test pixel generally play less
important role in reconstructing the test pixel. Considering
that the contribution of the atoms in reconstructing the test
pixel are different, the CR-based model in (9) is extended to
an adaptive CR model where a different measurement between
the test pixel and each dictionary atom is added to the �2-norm
regularization. By replacing the �2-norm regularization with a
dissimilar-weighted regularization, (9) can be reformulated as

〈X̂, β̂〉 = arg min
X,β

∥∥∥∥∥
M∑

m=1

βm Km(D, Y )−
M∑

m=1

βm Gm X

∥∥∥∥∥
2

F

+ λ‖� 	 X‖2F
s.t. βm ≥ 0, and

M∑

m=1

βm = 1 (10)

where 	 denotes elementwise multiplication and
� ∈ R

N×P denotes the biasing Tikhonov matrix with
�i, j = dist(�(d i ),�(y j )). dist(�(d i ),�(y j )) denotes the
Euclidean distance (ED) between the atom d i and the sample
y j in the ensemble kernel space, which adaptively controls
the contribution of each atom d i in representing y j . A larger
dist indicates a greater dissimilarity between d i and y j in the
ensemble kernel space, it is less possible to yield a large CR
coefficient. Hence, the CR coefficients obtained by MKACRC
tend to integrate the locality structure information into the
multiple kernel CR-based methods. Compared with MKCRC,
MKACRC can obtain more discriminative CR coefficients to
represent the test pixel more robustly in the ensemble kernel
space.
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B. Optimization

Generally, the objective function in Eq. (10) is difficult to
optimize directly, a feasible solution is to alternatively solve
the coefficient matrix X and the kernel weight vector β with
an iterative two-step optimization strategy. At each iteration,
one of X and β is fixed and the other is solved, then the roles
of X and β are transformed. Once the convergence criterion
(or a maximum number of iteration) reachs, the iteration
procedure stops.

1) On Optimizing X: When update X , β can be fixed,
the optimization in (10) is reduced to an adaptive CR-based
coding problem

X̂ = arg min
X

∥∥∥∥∥
M∑

m=1

βm Km(D, Y )−
M∑

m=1

βm Gm X

∥∥∥∥∥
2

F

+ λ‖� 	 X‖2F . (11)

Since X denotes the combination of each CR coefficient vector
αi (1 ≤ i ≤ P), we can separately optimize αi and combine
them into X . For solving αi , the optimization problem in (11)
can be simplified as an equivalent optimization

α̂i = arg min
αi

∥∥∥∥∥
M∑

m=1

βm Km(D, yi )−
M∑

m=1

βm Gmαi

∥∥∥∥∥
2

2

+ λ‖�iαi‖22 (12)

where �i = diag(dist(�(d1),�(yi )), . . . , dist(�(d N ),
�(yi ))) denotes the dissimilar-weighted regularization matrix,
which can adaptively assign large coefficients to the atoms
that are close to the training pixel y j and diminish the adverse
effect of dissimilar pixels. Similar to (5), the coefficient vector
αi in the ensemble kernel space can be computed in a closed
form

α̂i =
(
GT G + λ�T

i �i
)−1GT K (D, yi ) (13)

where K (D, yi ) =
∑M

m=1 βm Km(D, yi ).
2) On Optimizing β: When update β , X can be fixed.

The optimization in (10) is reduced to

β̂ = arg min
β

∥∥∥∥∥
M∑

m=1

βm Km(D, Y )−
M∑

m=1

βm Gm X

∥∥∥∥∥
2

F

s.t. βm ≥ 0, and
M∑

m=1

βm = 1. (14)

Since Km(D, Y ) and Gm are known as a prior, one can solve
the optimization in (14) via a standard constrained quadratic
program. Hence, we further reformulate (14) to a concise form

β̂ = arg min
β

∥∥∥∥∥
M∑

m=1

βm em

∥∥∥∥∥
2

F

s.t. βm ≥ 0, and
M∑

m=1

βm = 1 (15)

where em = Km(D, Y )− Gm X . Then, we stack each column
of em into one column, turning it to a column vector ẽm .

Defining Ẽ = {ẽ1, ẽ2, . . . , ẽM }, we can reformulate (15) to a
constrained quadratic program problem

β̂ = arg min
β
‖Ẽβ‖22 s.t. βm ≥ 0, and C · β = 1 (16)

where C = [1, 1, . . . , 1] ∈ R
1×M . The optimization problem

in (16) can be efficiently solved by various standard convex
optimization solvers. The training procedure of MKACRC
for learning the kernel weights for multiple kernels is given
in Algorithm 1.

Algorithm 1 Training Procedure of MKACRC

1: Input: Dictionary set D = {Dc}Cc=1 ∈ R
B×N , training set

Y = { y1, y2, . . . , yP} ∈ R
B×P , parameters λ, maximum

iteration count T .
2: Initialization:

1) Selecting a suitable kernel combination: Naive, multi-
metric, or multiscale form;
2) Initialize the kernel weight vector β and compute
{K (D, yi )}Mm=1 and multiple kernel Gram matrix Gm in the
ensemble kernel space.

3: t ← 0
4: while t ≤ T do
5: Collaborative coding stage:
6: for each training pixel yi do
7: 1) Compute the locality adaptor �i with entries

dist(�(d i ),�(y j )) for i = 1, 2, . . . , N ;
8: 2) Compute the coding coefficients αi of training pixel

yi via an adaptive CR model in the ensemble kernel
space according to (12);

9: end for
10: Obtain the representation X = {α1,α2, . . . ,αP }
11: Kernel weights updating stage:
12: Solve the kernel weight vector β with fixed coding

coefficient matrix X;
13: Transform the problem in (14) into a constrained

quadratic program;
14: t ← t + 1
15: end while
16: Output: Kernel weight vector β.

C. Classification Procedure for Test Pixels
In order to determine the class label of an unknown

pixel y, we calculate the CR coefficient vector α over D
in the ensemble kernel space via adaptive CR model. After
accomplishing the training procedure of the proposed multiple
kernel CR classification framework, both the ensemble kernel
K (D, y) and the multikernel Gram matrix G can be computed
based on the learned kernel weights. In the multiple kernel-
induced space, the coefficient vector α of y can be solved by
a dissimilar-weighted �2-norm regularization

α̂ = arg min
α

∥∥∥∥∥
M∑

m=1

βm Km(D, y)−
M∑

m=1

βm Gmα

∥∥∥∥∥
2

2

+λ‖�α‖22
(17)
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Fig. 2. Flowchart of the proposed multiple kernel CR-based classification
framework.

where � = diag(dist(�(d1),�(y)), . . . , dist(�(d N ),�(y)))
denotes the dissimilar-weighted regularization matrix. Similar
to (5), the coefficient vector α can be computed in a closed
form

α̂ = (GT G + λ�T �)−1GT K (D, y). (18)

Finally, the class label of the test pixel y can be assigned by
the minimum residual between y and its C approximations
in the ensemble kernel space

class(y) = arg min
c=1,...,C

‖K (D, y)− Gcδc(α)‖22 (19)

where Gc denotes the multiple kernel Gram matrix of the
atoms in the cth class, and δc denotes the indicator func-
tion [9] that extracts coefficients related to the elements of
the cth class. The flowchart of the proposed multiple kernel
CR-based classification framework is shown in Fig. 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We investigate the effectiveness of the proposed multiple
kernel CR-based classification framework, compared against
the existing state-of-the-art representation-based classifiers on
three public HSIs.

A. Data Set Description

In our experiments, three popular HSIs are used to evaluate
the performance of the proposed multiple kernel CR-based
methods.

1) Indian Pines: The first HSI was gathered by the AVIRIS
sensor over an agricultural test site in Northwestern
Indiana. The scene originally contains 220 spectral
channels, and the image size is 145 × 145 pixels.
Twenty water absorption bands are removed, and the
remaining 200 channels are used for experiments. This
scene contains 16 land-cover classes originally, and nine
classes are considered in our experiments (it is allowed
for more training dictionary from a statistical view-
point [4]). A total of 9345 labeled pixels are contained
in the ground truth map. Fig. 3(a) presents the false color
map and the ground truth map of the Indian Pines image.

2) Pavia University: The second HSI was acquired by the
ROSIS-03 optical sensor [54] over the campus in the
University of Pavia, Italy. This scene originally contains
115 spectral channels with an image size of 610× 340
pixels. Twelve noisy and water absorption channels
are discarded, the remaining 103 spectral channels are
retained. There are 43 923 labeled pixels in total and

Fig. 3. False color images and ground truth maps for the three HSIs.
(a) Indian Pines. (b) Pavia University. (c) Pavia Center.

nine ground-truth classes. Fig. 3(b) shows the three-band
false color map and the reference map of this image.

3) Pavia Center: The third HSI was also acquired by the
ROSIS-03 optical sensor in the city center of Pavia,
Italy. The scene contains 102 spectral channels (with
a range from 0.43 to 0.86 μm) and the image size is
1096 × 715 pixels with a spatial resolution of 1.3 m
per pixel. The ground reference map contains 148 152
labeled pixels and nine land-cover classes.

More details about these three HSIs are listed in Tables I
and II.

B. Experimental Setting

In the proposed multiple kernel CR-based classification
framework, EMPs [55] are used to extract spectral spatial
information, which can provide an extra discrimination capa-
bility for remote sensing classification [33], [43]. Individually,
PCA is performed on the original HSI, and a series of morpho-
logical openings and closings with structuring elements of
different sizes is carried out on the extracted PCs to obtain
the EMP features. The parameters adopted in our experiments
for EMPs feature on three HSIs are listed in Table III.
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TABLE I

TOTAL NUMBERS OF LABELED PIXELS FOR THE THREE HISs

TABLE II

MAIN CHARACTERISTICS OF THE THREE HISs

TABLE III

PARAMETERS OF EMPs FEATURE FOR THE THREE HISs

After obtaining EMPs, multiple discriminative basic kernels
associated with EMPs feature are constructed. Three kinds
of kernel patterns are adopted in our experiments. Here,
we briefly present the adopted kernel construction patterns for
the proposed multiple kernel CR-based classification frame-
work.

1) Naive Combination: Three widely used kernels,
i.e., linear kernel (K (d i , d j ) = dT

i d j ), polynomial
kernel (K (di , d j ) = (dT

i d j + 1)a), and Gaussian RBF
kernel K (di , d j ) = exp (−dist(di − d j )/2σ 2)), are
selected as the predefined basic kernels. The corre-
sponding variants for the proposed methods denote as
a Naive and a Naive MKACRC.

2) Multimetric Combination: The Gaussian RBF kernel
(K (d i , d j ) = exp (−dist(d i − d j )/2σ 2)) with three
well-performing discriminative kernel distance
metrics (dist(d i − d j )), including ED, Mahalanobis
distance (MD), and spectral angle distance (SAD),
is adopted in Multimetric MKCRC and Multimetric
MKACRC.

3) Multiscale Combination: The Gaussian RBF kernel
(K (d i , d j ) = exp (−dist(d i − d j )/2σ 2)) with different
scales σ correspond to different estimates of the

pixel sample similarity. Integrating the basic kernels of
different scales can improve the classification ability
of single-scale-based kernel methods. The proposed
multiple kernel methods by combining different kernel
scales are denoted as Multiscale MKCRC and Multiscale
MKACRC.

To validate the performance of the proposed method,
we compare it with several state-of-the-art representation-
based methods, including EMPs-based CRC (EMPs-
CRC) [10] and its kernel version (EMPs-KCRC) [56]
and EMPs-based NRS [22] (EMPs-NRS) and its kernel
version (EMPs-KNRS). The two joint representation-
based methods (JSRC [11] and JCRC [57]) and its kernel
version (KJSRC [25] and KJCRC) are also included. Note that
EMPs-CRC, EMPs-KCRC, EMPs-NRS, and EMPs-KNRS
are pixelwise classifiers based on the spectral–spatial feature,
and JSRC, KJSRC, JCRC, and KJCRC denote spectral–spatial
methods.

For the proposed multiple kernel CR-based methods,
the regularization parameter λ is learned by k-fold cross vali-
dation in the range of [10−4, 10−5, 10−6, 10−7, 10−8, 10−9],
and k is set to 10. For the polynomial kernel, a is set
as 2 for the three HSIs. For the Naive and Multimetric
variants, the parameter σ of Gaussian RBF kernel is set by
the median value of 1/(‖di − d̂‖22), i = 1, 2, . . . , N , where
d̂ = (1/N)

∑N
i=1 d i is the mean of all available dictionary

atoms [52]. For Multiscale variants, the parameter σ is set
in the range [0.2 0.5 0.8 1.1 1.4 1.7 2.0]. For Multimetric vari-
ants, the Gaussian RBF kernel with multiple distance metrics
is chosen to construct the predefined kernels, the parameter
σ for each metric-based kernel is set as 1/(‖d i − d̂‖22),
i = 1, 2, . . . , N . For spectral–spatial methods, the optimal
window size is selected differently for varied HSIs (7 × 7
for Indian Pines, 15× 15 for Pavia University, and 5× 5 for
Pavia Center) to achieve the best classification performance.

For quantitative assessment, three widely used metrics (i.e.,
individual class accuracy (CA), overall accuracy (OA), and
kappa coefficient (κ)) are applied to the proposed methods by
calculating the averaged results with standard deviations over
ten independent Monte Carlo (MC) runs.

C. Effectiveness of MKCRC and MKACRC

1) Comparisons of Different Classifiers: The first experi-
ment is implemented on three HSIs to verify the effectiveness
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Fig. 4. Classification maps obtained by different representation-based classifiers on the Indian Pines image. (a) EMPs-CRC [10]. (b) EMPs-NRS [22].
(c) JSRC [11]. (d) JCRC [57]. (e) EMPs-KCRC [56]. (f) EMPs-KNRS. (g) KJSRC [25]. (h) KJCRC. (i) Multimetric MKCRC. (j) Multimetric MKACRC.

Fig. 5. Classification maps obtained by different representation-based classifiers on the Pavia University image. (a) EMPs-CRC [10]. (b) EMPs-NRS [22].
(c) JSRC [11]. (d) JCRC [57]. (e) EMPs-KCRC [56]. (f) EMPs-KNRS. (g) KJSRC [25]. (h) KJCRC. (i) Multimetric MKCRC. (j) Multimetric MKACRC.

of the proposed multiple kernel CR-based classification frame-
work. In the test, we randomly choose 80, 60, and 60 labeled
pixels per class as a training dictionary for Indian Pines,
Pavia University, and Pavia Center, choose 120 labeled pixels
per class as a training set, and the remaining labeled pixels
are used for the test set. The multimetric pattern is adopted
in this experiment for the proposed multiple kernel CR-based
classification framework. The OAs and individual classifica-
tion accuracies (in percentage) and the κ statistic with the
standard deviation obtained by the proposed multiple kernel
CRCs, and its state-of-the-art representation-based competitors
on the Indian Pines, Pavia University, and Pavia Center are

listed in Tables IV–VI, respectively. The classification maps
for various representation-based classifiers on the three HSIs
are shown in Figs. 4–6, respectively.

In Tables IV–VI, it is apparent that the proposed
multiple kernel CRCs, i.e., MKCRC and MKACRC, show
powerful classification results among those state-of-the-art
representation-based classifiers on three HSIs. In MKCRC
and MKACRC, three distance metric-based (i.e., ED, MD,
and SAD based) kernels are adopted to construct the
unified multiple kernel CR-based classification framework,
and the resulted methods yield a better performance than
single kernel-based classifiers. Taking Pavia University image
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Fig. 6. Classification maps obtained by different representation-based classifiers on the Pavia Center image. (a) EMPs-CRC [10]. (b) EMPs-NRS [22].
(c) JSRC [11]. (d) JCRC [57]. (e) EMPs-KCRC [56]. (f) EMPs-KNRS. (g) KJSRC [25]. (h) KJCRC. (i) Multimetric MKCRC. (j) Multimetric MKACRC.

TABLE IV

CLASSIFICATION RESULTS (%) OF THE INDIAN PINES IMAGE OBTAINED BY EMPs-CRC [10], EMPs-NRS [22], JSRC [11], JCRC [57],
EMPs-KCRC [56], EMPs-KNRS, KJSRC [25], KJCRC, MULTIMETRIC MKCRC, AND MULTIMETRIC MKACRC

TABLE V

CLASSIFICATION RESULTS (%) OF THE PAVIA UNIVERSITY IMAGE OBTAINED BY EMPs-CRC [10], EMPs-NRS [22], JSRC [11], JCRC [57],
EMPs-KCRC [56], EMPs-KNRS, KJSRC [25], KJCRC, MULTIMETRIC MKCRC, AND MULTIMETRIC MKACRC

as an example, the OAs of MKCRC and MKACRC are
92.71% and 94.40% for the giving training dictionary
and test pixels, which are higher than those of EMPs-
KCRC, EMPs-KNRS, KJSRC, and KJCRC (88.06%, 91.28%,

84.82%, and 91.76%, respectively). Also, the single kernel-
based classifiers perform better than its corresponding linear
representation-based classifiers, i.e., EMPs-CRC, EMPs-NRS,
JSRC, and JCRC. Moreover, by integrating the spectral–spatial
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TABLE VI

CLASSIFICATION RESULTS (%) OF THE PAVIA CENTER IMAGE OBTAINED BY EMPs-CRC [10], EMPs-NRS [22], JSRC [11], JCRC [57],
EMPs-KCRC [56], EMPs-KNRS, KJSRC [25], KJCRC, MULTIMETRIC MKCRC, AND MULTIMETRIC MKACRC

TABLE VII

CLASSIFICATION RESULTS OF BOTH MKCRC AND MKACRC USING DIFFERENT KERNEL COMBINATION PATTERNS ON THREE HSIs

information of HSI, the proposed multiple kernel CR-based
methods based on EMPs feature outperform the spectral–
spatial techniques (i.e., JSRC and JCRC) and its kernel
variants (i.e., KJSRC and KJCRC). Besides, by incorpo-
rating locality constraint information into the typical CR
model in the ensemble kernel space, the proposed adaptive
version (i.e., MKACRC) yields a more satisfying OA results
of 0.64% for Indian Pines, 1.69% for Pavia University,
and 1.63% for Pavia Center than MKCRC. This is because
the test pixel is more prone to establish relations with the
atoms that are more similar to the test pixel via the adaptive
strategy.

2) Analysis of the Influence of Dictionary Size: To investi-
gate the influence of dictionary size on the proposed multiple
kernel CR-based classification framework, we experiment by
adopting a series of dictionary sizes and collecting the corre-
sponding classification results (OA and κ). The dictionary size
is set to 40, 60, and 80, the number of training samples is set
to 120, and the remaining labeled pixels are used for the test.
All the kernel construction patterns, including Naive, Multi-
metric, and Multiscale, are investigated in the experiment for
the proposed MKL framework. The classification results with
respect to different dictionary sizes on three HSIs are summa-
rized in Table VII. As can be observed, small-sized dictionary
leads to a low OA result for the proposed multiple kernel

CR-based methods, and the reason is that a small dictionary
set contains insufficient information to represent some test
pixels, i.e., the training dictionary is incomplete. As the dictio-
nary size increases, the training dictionary gradually becomes
complete and yields a better OA result. Note that Multi-
metric variants (i.e., Multimetric MKCRC and Multimetric
MKACRC) outperform its Naive and Multiscale variants with
respect to different dictionary sizes in most cases. Besides,
by incorporating spatial information via adaptive weights to
control the CR coefficients, MKACRC yields an improved
OA result compared with MKCRC under its different kernel
patterns.

D. Effect of Ensemble Kernel for CR-Based Classifiers

To investigate the effectiveness of an ensemble kernel
strategy for CRCs, we show the OA results of the proposed
multiple kernel CRCs (including three kernel patterns) and its
single kernel-based classifiers (i.e., baselines) with respect to
different dictionary sizes on the Pavia Center image in Fig. 7.
In this experiment, various numbers (from 5 to 50 pixels per
class) of labeled pixels are randomly chosen as the training
dictionary, 120 labeled pixels per class are randomly chosen
as the training set, and 1000 labeled pixels per class are
randomly chosen as the test set. For Naive variants, the CR
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Fig. 7. OA results obtained by the proposed multiple kernel CRCs and its corresponding baselines on the Pavia Center image. (a) Naive MKCRC and
baselines. (b) Multimetric MKCRC and baselines. (c) Multiscale MKCRC and baselines. (d) Naive MKACRC and baselines. (e) Multimetric MKACRC and
baselines. (f) Multiscale MKACRC and baselines.

Fig. 8. Kernel weights for basic kernels obtained by the proposed multiple kernel CRCs on the Pavia Center image. (a) Naive variants. (b) Multimetric
variants. (c) Multiscale variants.

and adaptive CR in RBF kernel space (i.e., KCRC-RBF
and KACRC-RBF) generally achieve better OA results than
the OA results in polynomial and linear kernel space,
and the corresponding fused kernel methods (i.e., Naive
MKCRC and Naive MKACRC) yield the best OA results
by combining the three heterogeneous kernels (i.e., linear,
poly, and RBF) together. For Multimetric variants, MD-kernel-
based classifiers (i.e., KCRC-MD and KACRC-MD) achieve
similar OA results to Ed-kernel-based classifiers along with
different dictionary sizes, and yield better OA results than
Sam-kernel-based classifiers. The fused multiple metric-based
kernel methods (i.e., Multimetric MKCRC and Multimetric
MKACRC) yield the best OA results by integrating multiple

heterogeneous space information into a unified MKL frame-
work. Besides, Multiscale MKCRC and Multiscale MKACRC
outperform each single-scale kernel methods by learning an
optimal linear combination of multiple kernels with different
scales (corresponding to varying estimates of sample simi-
larity). Overall, the proposed multiple kernel CRCs consis-
tently provide superior classification results over its single
kernel-based classifiers concerning different dictionary sizes.

E. Analysis for the Weights of Different Kernels

Three kernel construction patterns are adapted for the
proposed MKL framework, how to determine their kernel
weights is another critical problem. To enhance the
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Fig. 9. Kernel weights of basic kernels obtained by Naive MKACRC along with different iteration numbers. (a) Indian Pines. (b) Pavia University. (c) Pavia
Center.

TABLE VIII

COMPUTATIONAL TIME (IN SECONDS) OBTAINED BY THE PROPOSED MULTIPLE KERNEL CRCs ALONG
WITH DIFFERENT NUMBERS OF TRAINING DICTIONARY

reconstruction power of the kernel dictionary, we learn an
ensemble kernel (i.e., an optimal linear combination of a
series of basic kernels) from the training samples based on
the minimum residual criterion via a two-step optimization
strategy. Fig. 8 plots the learned kernel weights of each basic
kernels for the proposed multiple kernel CRCs (including three
kernel patterns) on three HSIs when 120 labeled pixels for
each class are used for training. As can be observed, the kernel
weights obtained by linear, polynomial, and RBF kernels are
close to each other via the adaptive CR model, whereas the
RBF kernel gets a more substantial weight than the other two
basic kernels via the CR model. The kernel weights obtained
by each single metric-based kernels (i.e., ED-, MD-, and Sam-
based kernels) are slightly different from each other for the
Multiscale variants. Besides, the basic kernel with σ = 0.2
gets the most considerable weight in Multiscale MKCRC,
and the basic kernel with σ = 0.3 provides the key role
in Multiscale MKACRC. In a word, the proposed multiple
kernel CRCs can assign kernel weights for different basic
kernels according to their roles in representing the training
samples, and further boost the discrimination power of the
traditional CRCs.

To investigate the influence of iterations on the kernel
weights, we carry out experiments by collecting the kernel
weights of the proposed methods using different iterations.
Taking the Naive MKACRC method as examples, the kernel
weights of three basic kernels (i.e., linear, poly, and RBF
kernels) in terms of different iterations are presented in Fig. 9.
In this experiment, the iterations are varied from 20 to 100 with

a step of 20. As can be observed, the kernel weights of the
Naive MKACRC method constantly change to a stable value as
the iteration number increases from 20 to 80. Then, the kernel
weights of the three basic kernels nearly keep unchanged as
the range from 80 to 100.

F. Computational Time

Finally, we evaluate the computational time of the proposed
multiple kernel CR-based methods. All the algorithms are
implemented using MATLAB R2016a environment on a
3.60 GHz Core i7-4790 CPU PC with 16 GB of RAM.
The computational time for the proposed methods consists of
two parts: an iterative training procedure (i.e., the learning of
kernel weights) via a two-step iteration strategy and a testing
procedure. The iteration alternation of collaborative coding
and kernel weights update is time-consuming. Table VIII
presents the computational time (in seconds) obtained by
the proposed multiple kernel CR-based methods along with
different numbers of training dictionary on three HSIs.
As the number of training dictionary increases, the running
time increases. By considering the adaptive CR mechanism,
the MKACRC methods have longer running time than its
corresponding MKCRC methods.

V. CONCLUSION

In this paper, we propose a novel multiple kernel CR-based
classification framework by embedding the MKL model into
CRCs, which aims at enhancing the representation ability of
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training dictionary in the fused kernel space. To efficiently
learn the optimal combination of multiple kernels, we add a
training stage to the typical CRCs via a two-step optimization
strategy, which can alternatively learn the representation coef-
ficients and kernel weights by minimizing the representation
error of training set. Three kernel patterns, including Naive,
Multimetric, and Multiscale, are applied to the proposed
MKL framework. Experimental results conducted on the three
HSIs demonstrate the superiority of the proposed multiple
kernel CRCs over several state-of-the-art classifiers and its
single kernel-based classifiers regarding classification results.
Besides, the adaptive CRCs outperform the CRCs in the
ensemble kernel space by considering different contributions
of the dictionary atoms in representing the test pixels. More-
over, to further enhance the performance of the proposed
multiple kernel CRCs, dictionary learning methods can be
applied to our MKL framework. Our future paper will focus
on exploiting discriminative dictionary learning-based MKL
methods for HSI to improve the classification performance.
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