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Abstract—In this letter, multisource earth observation (EO)
data sets, including multitemporal Landsat-8, digital surface
model, and spatial information, were integrated for land-
cover classification by random forest (RF) and support vector
machines (SVMs). We demonstrated in this letter that both
RF and SVM are useful tools for classification of land cover
in the local climate zones featured with highly heterogeneous
landscape. Classification of land cover by RF was with an
overall accuracy (OA) of 86.2%, while the OA was 85.5%
for SVM. However, we found that RF was more stable than
SVM for multisource EO data in classifying land cover without
normalizing different feature data sets. Experiments showed
that the thermal features were more important than temporal
and spatial ones in discriminating impervious objects, while the
temporal and spatial features were generally better than thermal
ones in separating the distinct vegetation categories. Another
finding was that our experiments indicated that spectral features
were the most important in classification of land cover, followed
by temporal, thermal, and spatial features, respectively. As to the
spectral features, red channels were the most important, followed
by short-wave infrared, near-infrared, and green channels. Thus,
it could be concluded that the combination of spectral, thermal,
spatial, and temporal information would be an optimal approach
to increase the OA of land-cover classification in the zones
featured with highly heterogeneous landscape.

Index Terms— Digital surface model (DSM), land cover, local
climate zones (LCZs), random forest (RF), thermal infrared
sensor (TIRS).

I. INTRODUCTION

OWADAYS, worldwide urbanization is unprecedentedly
in process. Rapid urbanization has resulted in that much
natural land cover being converted to artificial land cover.
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The structure and fabric of the land surface have also
simultaneously changed, triggering environmental and
ecological risks. Finely classifying the land cover according
to the structure, cover, and fabric of the urban area has
become critical for climate and environment research on urban
areas [1].

In the recent decades, earth observation (EO) has been
proven to be the most useful and efficient approach for
land-cover classification [2]-[7] because it can acquire large-
scale land-cover information quickly and repeatedly. Some
researchers achieved better classification results by integrating
useful information, such as spectral, spatial, thermal, and
temporal information based on multisource EO data.

Spatial features can provide the topographic and structure
information of the land surface to improve the classifica-
tion performance. Bechtel and Daneke [8] showed that the
spatial structure features [i.e., morphological attribute pro-
files (MAPs)] can be exploited to complement the spectral
features to improve the mapping accuracy in urban areas.
Wang et al. [9] integrated spatial topographical feature ele-
vation and slope into multispectral features to produce a finer
land-cover classification map. Temporal information was also
added to the classification procedure to reduce the misclassi-
fications of different vegetation types, which raises land-cover
classification accuracy [10]. Some classes of land cover have
different thermal radiance characteristics. Therefore, thermal
features were combined with multitemporal spectral bands
to increase the discrimination of bare soil and poplar grove
categories [11].

Although many studies on the multisource EO data fusion
indicated its great ability and potential for land-cover classifi-
cation, the strategy of combining spectral, spatial, temporal,
and thermal information is an open question. Meanwhile,
selecting a good classification method and assessing the impor-
tance of different features are the two key components for
the classification process. In this letter, an ensemble learning
technique, called random forest (RF), is chosen as the classifier
because it can provide a great classification performance in
an effective manner and assess the importance of the input
features. RF has been successfully applied to discriminate tree
species [12], classify land cover [11] and urban scenes [13],
generate wetland maps [14], and map forest [15] fusing
multisource EO data.

All aforementioned studies indicated that RF can deal with
multisource high-dimensional data. These data include differ-
ent kinds of features with different value ranges. However,
a few studies focused on evaluating the feature importance
of the spectral, temporal, thermal, and spatial information,
especially for digital surface model (DSM), MAPs derived
from DSM, and information in land-cover classification tasks,
and assessing the stability of RF rather than focusing on other
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Fig. 1. Location of the study area.

state-of-the-art classifiers for feature value normalization using
the multisource EO data.

The objective of this letter is to present a classification
scheme combining spectral, spatial, thermal, and temporal fea-
ture sets for vast areas with a complex landscape using RF and
compare it with well-known support vector machines (SVMs).
This letter focuses on the following questions.

1) Can a large highly heterogeneous landscape in local
climate zones (LCZs) be well classified by fusing four
feature sets using RF?

2) Is RF more stable than SVM?

3) What is the importance of each feature for the global
and per-class accuracies of the land cover?

II. DATA AND METHODS

A. Study Areas and Classification Scheme

Nanjing city (excluding the Gaochun District), which is the
capital of Jiangsu province, China, was selected as the study
area (Fig. 1). The study area measured 6069.52 km?, and had
an altitude ranging approximately from 1.4 to 360.6 m and an
average elevation of 25 m. The main land-cover types comprise
farmland, woodland, impervious surface, water, bare soil, etc.

The land cover was divided into eight classes based on the
structure, cover, and fabric of the land surface in the LCZ [1]:
high-rise building (HB), mid-rise building, low-rise building,
other impervious, woodland, low plant (LP), bare soil, and
water.

B. Multisource Earth Observation Data and Features

Two temporal Landsat-8 images were acquired on
September 2, 2015 (summer) and March 12, 2016 (spring).
For the multispectral bands, the top of the atmosphere
reflectance products acquired by radiometric calibration using
ENVI5.3 software was sufficient for the classification pur-
pose [16]. The thermal bands were converted into brightness
temperatures and resampled to 30 m.

The DSM data had better than 15-m planar accuracy and
5-m vertical accuracy derived from the resource satellite three
(ZY-3) images in 2015 using geometric precision correction.
The DSM data were registered to Landsat-8 images under less
than one-half pixel root-mean-square error and resampled to
30 m. In addition to the DSM, MAPs also provided extra
spatial information to improve the classification accuracy [17].
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TABLE I
FEATURE SETS AND THE NUMBER OF FEATURES n PER SET

Feature set Name of variables N
Spectral feature (F1) Cl1, B1, G1,R1, N1, S11, S12 7
Thermal feature (F2) T11,TI12 2

Spatial feature (F3) D,EIl, E2 3

Temporal feature (F4) Cl1,B1,GI1,R1,N1, S11, S12, T11, T12 18
Note: Cl1, BI, G1,R1, N1, S11, S12, T11, T12, C2, B2, G2, R2, N2, S21, S22,
T21, and T22: coastal (C); blue (B); green (G); red (R); near-infrared (NIR);
short-wave infrared 1 (SWIR1); SWIR2; thermal infrared sensor 1 (TIRSI);
TIRS2 bands of Landsat-8 of spring and summer; and D, E1, E2: DSM and PC
1 and PC 2 of MAPs.

The attributes comprised purely geometric (area) and tex-
tural (standard deviation) to achieve beneficial spatial infor-
mation. The rational threshold values for each attribute were
used by an automatic scheme [17]. Furthermore, the spatial
features derived from MAPs were transformed by a principal
component analysis for dimensionality reduction. Further-
more, the first two principal components (i.e., PC1 and PC2)
retaining more than 99% variance were used to classify the
land cover. The DSM data were complementary: the multi-
temporal RF images provided spectral, thermal, and temporal
information, whereas the DSM and MAPs provided spatial
topography and structure information.

Table I shows the four different feature sets used in this
letter.

C. RF-Based Classification Schemes

RF is an ensemble classification method that evolves from
the bagging method proposed by Breiman [18]. RF uses
many independent individual classification and regression
trees (CARTS) as the base classifier {h(X,6;),k = 1,...},
where h stands for the RF classifier, x is the input vector,
and {6} are the independent identically distributed random
vectors, from which all the CARTSs are generated. For classifi-
cation, each tree casted a unit vote for the most popular class
at each input instance. The final label was determined by a
majority vote of the trees. Note that the RF can measure the
feature importance processed out-of-bag data by means of the
permutation importance measure [18].

We designed the following six scenarios to assess the
stability of RF and examine the effect of different feature sets
on the classification accuracy: 1) scenario 1: F1; 2) scenario 2:
F1 and F2; 3) scenario 3: F1 and F3; 4) scenario 4: F4,
5) scenario 5: F1, F2, and F3; and 6) scenario 6: F3 and F4.

D. Reference Data

The ground reference data were collected by utilizing the
visual interpretation of high-spatial-resolution images from
Google Earth. Subsequently, 20% of the reference sam-
ples were randomly selected as a training set, and the
remaining 80% was used as the testing set to evaluate the
classification accuracy (Table II). The accuracy measures
employed in the process of accuracy assessment contained
overall accuracy (OA), user’s accuracy (UA), and producer’s
accuracy (PA) [19].

III. RESULTS AND DISCUSSION

In the experiments, RF is first utilized to execute the
classification process according to the scheme of six scenarios.
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TABLE II
GROUND REFERENCE DATA FOR EACH OF THE CLASSES

Class Description Train Test
Low-plant (LP) Grassland and farmland 5269 | 21075
High-rise building (HB) | Above 10 stories buildings 840 3361
Low-rise building (LB) 1-3 stories buildings 2600 | 10400
Mid-rise building (MB) 3-9 stories buildings 1061 4244
Other-impervious (OI) Bare rock and paved cover 830 3318

Bare-soil (BS) Bare soil and bare sand 243 974

Water (WT) All kinds of water bodies 878 3511
Woodland (WL) Forest and bush 2391 9564
Total samples 14112 | 56447
TABLE III
COMPARISON OF OA (%) BEFORE AND AFTER
NORMALIZATION FOR RF AND SVM
. RF SVM
Scenarios BF AF BF AF

Scenario 1 779 +0.11 77.7+£0.07 80.4=+0.13 80.4+0.11
Scenario 2 81.4+0.16 81.4+0.11 83.5+0.11 84.1+0.05
Scenario 3 81.0 £0.09 80.9+0.14 75.7 £0.21 80.4 +0.11
Scenario 4 819 £ 0.10 81.8 =0.06 84.1+0.09 84.1 £ 0.31
Scenario 5 83.6 +0.09 83.7+0.11 784+0.17 82.7+0.19
Scenario 6 86.4 £0.10 86.2 +£0.06 82.2 +£0.09 85.5+0.16

Note: BF is OA using the original values of every feature. AF is OA using the
normalized values of every feature.

Besides, another widely used classifier SVM is also employed
for a comparison with RF. For the RF method, two important
parameters should be set: the randomly selected features
(m) and number of trees (k). Default parameters are set to
m = 4/n, where n is the number of the inputted features [12],
and the number of trees k is fixed to be 200. As for SVM,
the radial basis function is chosen as the kernel function and
its optimal parameters (C and y) are obtained by grid-search
method.

A. RF and SVM Stability Comparison

Table III displays the OA of the RF and the SVM averaged
on ten random trials from the training and test samples with
95% confidence intervals for six scenarios.

The first analysis of OA showed a comparison of the RF
with the SVM for six scenarios. There is little change in OA
values of RF, and of SVM fusing similar feature data sets
before and after normalization, but OA values significantly
increase fusing different feature data sets which are normalized
for SVM.

From Table III, both classifiers showed their ability to tackle
the classification problem of the multisource EO data with
an OA of 86.2% for the RF and 85.5% for the SVM. The
normalization process has little influence on the classification
results using RF classifier. However, it plays an important
role for SVM classifier. Good performance is also achieved
by normalizing features for SVM.

B. Comparison of the Classification Results
With Different Feature Fusions

In this letter, we investigated the effect of the spectral feature
set fusing the thermal, spatial, and temporal feature sets for the
classification of a large heterogeneous landscape by the RF.
Table IV shows the result. Several findings are revealed as
follows.

1) Scenario 1 produced the lowest OA 77.9%. The PA and
the UA of HB, mid-rise building, and other impervious
are only 37.8%, 38.5%, 24.3%, 45%, 44.7%, and 38.6%.
It effectively failed to discriminate different impervious
classes.

2) The classification accuracy in scenario 2 increased com-
pared with that in scenario 1. The best OA reached
an 81.4% and 4.4% point increment over scenario 1.
As regards PA and UA, the HB, low-rise building,
mid-rise building, and other impervious achieved 53%,
2%, 23%, 18%, 41%, 7%, 17%, and 53% incre-
ments. The performance of the impervious objects
was remarkably improved because the thermal feature
set significantly increased the interclass discrimination.
Meanwhile, the separability between the bare soil and
the LP was enlarged to improve the accuracy of the
bare soil, which resulted in the accuracy increment
of 3.4% and 10.2% points.

3) Scenario 3 integrated the spatial features into multi-
spectral and gained results comparable with those in
scenario 2. It also greatly enhanced the performance
of HB, low-rise building, mid-rise building, other imper-
vious, and bare soil. Nevertheless, it caused an accu-
racy of HB and other impervious lower than those
in scenario 2.

4) Scenario 4, in which two temporal sets of multispectral
feature sets were fused, improved all kinds of accu-
racies for each class, especially for bare soil, LP, and
woodland. It also obtained a better OA than those of
scenarios 1 and 2.

5) Scenario 5 combined thermal information, spatial infor-
mation, and spectral information. The accuracies further
increased compared to those of scenarios 2 and 3. The
thermal and spatial information were mutually comple-
mentary for improving the classification performance.

6) Temporal information was added in scenario 5, while
the highest OA of 86.4% was achieved in scenario 6.
The per-class accuracy of HB, other impervious, and
bare soil increased by 3%, 16%, and 19% points for PA
and 7%, 10%, and 6% points for UA when compared
with those of scenario 5. The main reasons were that
the multitemporal operational land imager bands can
provide phenological information to separate the classes
of bare soil, LP, and woodland. Fig. 2 presents the clas-
sification maps. We can draw that the fusion of spectral,
thermal, spatial, and temporal evidently promoted the
classification results to efficiently and finely classify the
large heterogeneous landscape.

C. Feature Importance for the Global and
Class Accuracies

A uniform training set (1200 samples per class) was selected
to evaluate the feature importance for global and each class
and avoid the biases caused by some classes of a less number
of samples in scenario 5 [13].

Fig. 3 presents the feature importance for the calculated
global accuracy. The most relevant features for the global were
R2, S22, S21, N2, Gl1, and R1, followed by T11, T22, G2,
T21, N1, S12, B2, S11, C2, B1, Cl1, and T12. The relevance
of the spatial features (i.e., D, El, and E2) was the least. The
main possible reasons for this are listed as follows.

1) Coarser spatial resolution and lower noise—signal ratio

of the thermal infrared sensor (TIRS) bands.
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TABLE IV
OA (%), PER-CLASS PA (%), AND UA (%) OF FIVE SCENARIOS

scenarios LpP HB LB MB Ol BS WT WL OA
PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA

Scenariol 932 86.0 378 450 788 71.0 385 447 243 386 60.1 750 907 92,6 906 937 77.9+0.11
Scenario2 936 86.6 578 633 80.1 757 473 524 432 590 622 827 910 929 909 94.6 81.4%0.16
Scenario3 946 873 469 626 81.0 722 486 533 363 495 656 822 903 943 908 955  81.0+0.09
Scenario4 95.1 895 454 532 83.0 734 434 524 432 562 732 8.6 932 944 913 949  81.9+0.10
Scenario5 95.1 875 613 693 831 762 553 627 465 677 658 8.7 912 937 911 962  83.6+0.09
Scenario6 964 901 693 741 868 800 588 658 537 745 781 912 934 955 917 971  86.4%0.10
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2) Coarser topography and morphology information pro-
vided by the spatial features, and the reflectance in
the study area was high for the bare soil (lateritic
soil) [13] and inversely low for the impervious in the R
channel [20]. The LP and the woodland with vegetation
information had a high reflectance in the NIR and
G channels, respectively, which discriminated them from
the other classes. Near infrared (NIR) and short-wave
infrared (SWIR) were almost absorbed for water. All the
above mentioned led to a greater importance of the four
spectral features (i.e., R, SWIR, NIR, and G). The rest
of features will be explained for each class.

Fig. 4 shows the importance of the features of individual
class. The most important features for the LP were the
NIR bands of double temporal and the B and R bands of
summer. This class was mixed with vegetation and bare soil.
The bare-soil component made it possess a high reflectance in
the B and R bands, which were beneficial for separation from
the woodland. The reflectance of the vegetation component
was strong in the NIR bands, allowing the recognition of the
LP from the bare soil.

119°0'E 118°30'E 119°0'E

() (e

118°30'E 119°0'E

Classification maps obtained with RF classifier considering (a) scenario 1, OA = 77.9%, (b) scenario 2, OA = 81.4%, (c) scenario 3, OA = 81%,

Regarding HB, in addition to the four TIRS bands of two
temporal sets, the third spatial feature was very discriminating.
The radiance and structure information of the HB class were
different from those of the other low impervious objects. The
multispectral bands in this class did not seem to be very
important because they were not suitable for discriminating
objects with a distinct height.

Low-rise building and other impervious showed more
importance in the two SWIR bands of summer and the two
TIRS bands of spring. As expected, the spectral signatures
were different between the impervious surface and the bare
soil in SWIR [20] and among the impervious objects with
different heights in TIRS [1], which explained the relativity
of a couple of features for the two classes.

Regarding the mid-rise building, the feature importance
was more scattering among the spectral, thermal, spatial,
and temporal sets, which made the separation more difficult
(Table IV). Three spatial features seemed to be more relevant
than some multispectral bands (i.e., G, R, and SWIR bands
of spring) because the spatial features can provide spatial
structure information to discriminate different objects with
distinct heights.

The bare soil in the study area was substantially composed
of lateritic soil with high reflectance in the two R bands
of spring and summer, resulting in a great importance of
this band. As for the G and two SWIR bands of summer,
the bare soil usually covered by less grass in summer was
different from the impervious objects in the G band and LP
and impervious objects in the SWIR bands, which interpreted
the relative importance of the G and SWIR bands, respectively.

For water, two NIR and four SWIR bands of double tempo-
ral showed a high level of importance. Indeed, the relatively
low reflectance was specific to water. Conversely, the spatial
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Fig. 4. Feature importance per class by mean decrease permutation accuracy.

features were least important because water had no clear
structure information.

The woodland showed greater importance in the G and
R bands of the two seasons when compared to the other
multispectral bands. In general, dense vegetation scenes with
high reflectance in G and strong absorption in R were different
from the other classes. In addition, two TIRS bands of summer
and two spatial features seemed to be more relevant for
this category as the woodland separated from the LP in the
information of topographical, structural, and thermal radiance.

IV. CONCLUSION

This letter aims to assess the performance of the RF clas-
sifier for the land-cover classification of a heterogeneous area
(i.e., Nanjing city) and evaluate the feature importance for
global and per class. Fusing spectral, thermal, spatial, and
temporal features, the RF performed well in the scheme
of classifications with eight classes without normalizing for
different features, and was more stable than the SVM with
respect to the multisource EO data. Moreover, the RF classi-
fier provided the permutation accuracy criteria for evaluating
the importance of each feature for the global accuracy and
individual class. In summary, the spectral feature set was more
important than the thermal feature set and the spatial feature
set in the classification process. The most relevant features
in the spectral feature set were the R, SWIR, NIR, and
G channels. The spectral information in the spring Landsat
image was more conducive to the classification performances
than that in the summer Landsat image. However, the thermal
features were vitally important for some specific classes,
such as HBs, low-rise buildings, mid-rise buildings, and other
impervious, in which temperature was a critical factor. The
spatial feature set greatly influenced the woodland, LP, and
mid-rise building classes.
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